BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25092209)

  • 1. The effect of muscle weakness on the capability gap during gross motor function: a simulation study supporting design criteria for exoskeletons of the lower limb.
    Afschrift M; De Groote F; De Schutter J; Jonkers I
    Biomed Eng Online; 2014 Aug; 13():111. PubMed ID: 25092209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching for strategies to reduce the mechanical demands of the sit-to-stand task with a muscle-actuated optimal control model.
    Bobbert MF; Kistemaker DA; Vaz MA; Ackermann M
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():83-90. PubMed ID: 27380203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What are the effects of simulated muscle weakness on the sit-to-stand transfer?
    Caruthers EJ; Schneider G; Schmitt LC; Chaudhari AMW; Siston RA
    Comput Methods Biomech Biomed Engin; 2020 Aug; 23(11):765-772. PubMed ID: 32469249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Custom sizing of lower limb exoskeleton actuators using gait dynamic modelling of children with cerebral palsy.
    Samadi B; Achiche S; Parent A; Ballaz L; Chouinard U; Raison M
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1519-24. PubMed ID: 26980164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators.
    Glowinski S; Obst M; Majdanik S; Potocka-Banaś B
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How robust is human gait to muscle weakness?
    van der Krogt MM; Delp SL; Schwartz MH
    Gait Posture; 2012 May; 36(1):113-9. PubMed ID: 22386624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscles limiting the sit-to-stand movement: an experimental simulation of muscle weakness.
    Van der Heijden MM; Meijer K; Willems PJ; Savelberg HH
    Gait Posture; 2009 Jul; 30(1):110-4. PubMed ID: 19419871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plantarflexor weakness is a determinant of kinetic asymmetry during gait in post-stroke individuals walking with high levels of effort.
    Lauzière S; Miéville C; Betschart M; Aissaoui R; Nadeau S
    Clin Biomech (Bristol, Avon); 2015 Nov; 30(9):946-52. PubMed ID: 26209904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gluteus maximus and soleus compensate for simulated quadriceps atrophy and activation failure during walking.
    Thompson JA; Chaudhari AM; Schmitt LC; Best TM; Siston RA
    J Biomech; 2013 Sep; 46(13):2165-72. PubMed ID: 23915576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Mechanically Passive, Wearable Shoulder Exoskeletons on Muscle Output During Dynamic Upper Extremity Movements: A Computational Simulation Study.
    Nelson AJ; Hall PT; Saul KR; Crouch DL
    J Appl Biomech; 2020 Apr; 36(2):59-67. PubMed ID: 31968306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary Study on Effects of Neck Exoskeleton Structural Design in Patients With Amyotrophic Lateral Sclerosis.
    Demaree D; Brignone J; Bromberg M; Zhang H
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1841-1850. PubMed ID: 38709603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches.
    Smith AJJ; Fournier BN; Nantel J; Lemaire ED
    J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensations in lower limb joint work during walking in response to unilateral calf muscle weakness.
    Waterval NFJ; Brehm MA; Ploeger HE; Nollet F; Harlaar J
    Gait Posture; 2018 Oct; 66():38-44. PubMed ID: 30145473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadriceps strength asymmetry predicts loading asymmetry during sit-to-stand task in patients with unilateral total knee arthroplasty.
    Alnahdi AH; Zeni JA; Snyder-Mackler L
    Knee Surg Sports Traumatol Arthrosc; 2016 Aug; 24(8):2587-94. PubMed ID: 26450826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons.
    Grimmer M; Riener R; Walsh CJ; Seyfarth A
    J Neuroeng Rehabil; 2019 Jan; 16(1):2. PubMed ID: 30606194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The efficacy of powered orthoses on walking in persons with paraplegia.
    Arazpour M; Hutchins SW; Ahmadi Bani M
    Prosthet Orthot Int; 2015 Apr; 39(2):90-9. PubMed ID: 24549210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.