BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25092608)

  • 1. Reflections on the catalytic power of a TIM-barrel.
    Richard JP; Zhai X; Malabanan MM
    Bioorg Chem; 2014 Dec; 57():206-212. PubMed ID: 25092608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wildtype and engineered monomeric triosephosphate isomerase from Trypanosoma brucei: partitioning of reaction intermediates in D2O and activation by phosphite dianion.
    Malabanan MM; Go MK; Amyes TL; Richard JP
    Biochemistry; 2011 Jun; 50(25):5767-79. PubMed ID: 21553855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop.
    Borchert TV; Abagyan R; Kishan KV; Zeelen JP; Wierenga RK
    Structure; 1993 Nov; 1(3):205-13. PubMed ID: 16100954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site properties of monomeric triosephosphate isomerase (monoTIM) as deduced from mutational and structural studies.
    Schliebs W; Thanki N; Eritja R; Wierenga R
    Protein Sci; 1996 Feb; 5(2):229-39. PubMed ID: 8745400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase.
    Richard JP
    Biochemistry; 2012 Apr; 51(13):2652-61. PubMed ID: 22409228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Lys-12 in catalysis by triosephosphate isomerase: a two-part substrate approach.
    Go MK; Koudelka A; Amyes TL; Richard JP
    Biochemistry; 2010 Jun; 49(25):5377-89. PubMed ID: 20481463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a hydrophobic clamp.
    Malabanan MM; Koudelka AP; Amyes TL; Richard JP
    J Am Chem Soc; 2012 Jun; 134(24):10286-98. PubMed ID: 22583393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three new crystal structures of point mutation variants of monoTIM: conformational flexibility of loop-1, loop-4 and loop-8.
    Borchert TV; Kishan KV; Zeelen JP; Schliebs W; Thanki N; Abagyan R; Jaenicke R; Wierenga RK
    Structure; 1995 Jul; 3(7):669-79. PubMed ID: 8591044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase.
    Kulkarni YS; Liao Q; Petrović D; Krüger DM; Strodel B; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2017 Aug; 139(30):10514-10525. PubMed ID: 28683550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triosephosphate isomerase: a highly evolved biocatalyst.
    Wierenga RK; Kapetaniou EG; Venkatesan R
    Cell Mol Life Sci; 2010 Dec; 67(23):3961-82. PubMed ID: 20694739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase.
    Kulkarni YS; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2019 Oct; 141(40):16139-16150. PubMed ID: 31508957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation analysis of triose phosphate isomerase: conformational transition and catalysis.
    Karplus M; Evanseck JD; Joseph D; Bash PA; Field MJ
    Faraday Discuss; 1992; (93):239-48. PubMed ID: 1290934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural mutations that probe the interactions between the catalytic and dianion activation sites of triosephosphate isomerase.
    Zhai X; Amyes TL; Wierenga RK; Loria JP; Richard JP
    Biochemistry; 2013 Aug; 52(34):5928-40. PubMed ID: 23909928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A double mutation at the tip of the dimer interface loop of triosephosphate isomerase generates active monomers with reduced stability.
    Schliebs W; Thanki N; Jaenicke R; Wierenga RK
    Biochemistry; 1997 Aug; 36(32):9655-62. PubMed ID: 9245397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based protein engineering efforts with a monomeric TIM variant: the importance of a single point mutation for generating an active site with suitable binding properties.
    Alahuhta M; Salin M; Casteleijn MG; Kemmer C; El-Sayed I; Augustyns K; Neubauer P; Wierenga RK
    Protein Eng Des Sel; 2008 Apr; 21(4):257-66. PubMed ID: 18239072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-Site Glu165 Activation in Triosephosphate Isomerase and Its Deprotonation Kinetics.
    Deng H; Dyer RB; Callender R
    J Phys Chem B; 2019 May; 123(19):4230-4241. PubMed ID: 31013084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein engineering with monomeric triosephosphate isomerase (monoTIM): the modelling and structure verification of a seven-residue loop.
    Thanki N; Zeelen JP; Mathieu M; Jaenicke R; Abagyan RA; Wierenga RK; Schliebs W
    Protein Eng; 1997 Feb; 10(2):159-67. PubMed ID: 9089815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The TIM-barrel fold: a versatile framework for efficient enzymes.
    Wierenga RK
    FEBS Lett; 2001 Mar; 492(3):193-8. PubMed ID: 11257493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe.
    Richard JP; Cristobal JR; Amyes TL
    Acc Chem Res; 2021 May; 54(10):2532-2542. PubMed ID: 33939414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based directed evolution of a monomeric triosephosphate isomerase: toward a pentose sugar isomerase.
    Krause M; Neubauer P; Wierenga RK
    Protein Eng Des Sel; 2015 Jun; 28(6):187-97. PubMed ID: 25767111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.