BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 25092622)

  • 21. Development of a Patient-specific Tumor Mold Using Magnetic Resonance Imaging and 3-Dimensional Printing Technology for Targeted Tissue Procurement and Radiomics Analysis of Renal Masses.
    Dwivedi DK; Chatzinoff Y; Zhang Y; Yuan Q; Fulkerson M; Chopra R; Brugarolas J; Cadeddu JA; Kapur P; Pedrosa I
    Urology; 2018 Feb; 112():209-214. PubMed ID: 29056576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Printing of Patterned, Engineered E. coli Biofilms with a Low-Cost 3D Printer.
    Schmieden DT; Basalo Vázquez SJ; Sangüesa H; van der Does M; Idema T; Meyer AS
    ACS Synth Biol; 2018 May; 7(5):1328-1337. PubMed ID: 29690761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Printing of a Transconjunctival Vitrectomy Trocar-Cannula System.
    Navajas EV; Ten Hove M
    Ophthalmologica; 2017; 237(2):119-122. PubMed ID: 28249289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning.
    Ploch CC; Mansi CSSA; Jayamohan J; Kuhl E
    World Neurosurg; 2016 Jun; 90():668-674. PubMed ID: 26924117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional printing versus conventional machining in the creation of a meatal urethral dilator: development and mechanical testing.
    Chen MY; Skewes J; Daley R; Woodruff MA; Rukin NJ
    Biomed Eng Online; 2020 Jul; 19(1):55. PubMed ID: 32611431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.
    Yamamoto I; Ota R; Zhu R; Lawn M; Ishimatsu T; Nagayasu T; Yamasaki N; Takagi K; Koji T
    Biomed Mater Eng; 2015; 26 Suppl 1():S341-5. PubMed ID: 26406021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and 3D-printing of MRI-compatible cradle for imaging mouse tumors.
    Donohoe DL; Dennert K; Kumar R; Freudinger BP; Sherman AJ
    3D Print Med; 2021 Oct; 7(1):33. PubMed ID: 34665333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 3D Printed Toolbox for Opto-Mechanical Components.
    Salazar-Serrano LJ; P Torres J; Valencia A
    PLoS One; 2017; 12(1):e0169832. PubMed ID: 28099494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics.
    Goyanes A; Wang J; Buanz A; Martínez-Pacheco R; Telford R; Gaisford S; Basit AW
    Mol Pharm; 2015 Nov; 12(11):4077-84. PubMed ID: 26473653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developing Microfluidic Sensing Devices Using 3D Printing.
    Rusling JF
    ACS Sens; 2018 Mar; 3(3):522-526. PubMed ID: 29490458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Printing for veterinary anatomy: An overview.
    Wilhite R; Wölfel I
    Anat Histol Embryol; 2019 Nov; 48(6):609-620. PubMed ID: 31702827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology.
    Wake N; Chandarana H; Huang WC; Taneja SS; Rosenkrantz AB
    Clin Radiol; 2016 Jun; 71(6):610-4. PubMed ID: 26983650
    [No Abstract]   [Full Text] [Related]  

  • 33. Reproducibility, Accuracy and Effect of Autoclave Sterilization on a Thermoplastic Three-Dimensional Model Printed by a Desktop Fused Deposition Modelling Three-Dimensional Printer.
    Boursier JF; Fournet A; Bassanino J; Manassero M; Bedu AS; Leperlier D
    Vet Comp Orthop Traumatol; 2018 Nov; 31(6):422-430. PubMed ID: 30300914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Invited review--Applications for 3D printers in veterinary medicine.
    Hespel AM; Wilhite R; Hudson J
    Vet Radiol Ultrasound; 2014; 55(4):347-58. PubMed ID: 24889058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodology and feasibility of a 3D printed assistive technology intervention.
    Schwartz JK; Fermin A; Fine K; Iglesias N; Pivarnik D; Struck S; Varela N; Janes WE
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):141-147. PubMed ID: 30663439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D-printed upper limb prostheses: a review.
    Ten Kate J; Smit G; Breedveld P
    Disabil Rehabil Assist Technol; 2017 Apr; 12(3):300-314. PubMed ID: 28152642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.
    Gür Y
    Mol Cell Biomech; 2014 Dec; 11(4):249-58. PubMed ID: 26336695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printed Micro Free-Flow Electrophoresis Device.
    Anciaux SK; Geiger M; Bowser MT
    Anal Chem; 2016 Aug; 88(15):7675-82. PubMed ID: 27377354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printing of meat.
    Dick A; Bhandari B; Prakash S
    Meat Sci; 2019 Jul; 153():35-44. PubMed ID: 30878821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.
    Mahmoud A; Bennett M
    Arch Pathol Lab Med; 2015 Aug; 139(8):1048-51. PubMed ID: 26230598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.