These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25093443)

  • 1. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.
    Perinu C; Arstad B; Bouzga AM; Jens KJ
    J Phys Chem B; 2014 Aug; 118(34):10167-74. PubMed ID: 25093443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide: electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines.
    Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M
    Environ Sci Technol; 2013 Jan; 47(2):1163-9. PubMed ID: 23190202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of steric hindrance on carbon dioxide absorption into new amine solutions: thermodynamic and spectroscopic verification through solubility and NMR analysis.
    Park JY; Yoon SJ; Lee H
    Environ Sci Technol; 2003 Apr; 37(8):1670-5. PubMed ID: 12731852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Study of the CO2 Absorption in Some Solvent-Free Alkanolamines and in Aqueous Monoethanolamine (MEA).
    Barzagli F; Mani F; Peruzzini M
    Environ Sci Technol; 2016 Jul; 50(13):7239-46. PubMed ID: 27294832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbamate stabilities of sterically hindered amines from quantum chemical methods: relevance for CO2 capture.
    Gangarapu S; Marcelis AT; Zuilhof H
    Chemphyschem; 2013 Dec; 14(17):3936-43. PubMed ID: 24203852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new class of single-component absorbents for reversible carbon dioxide capture under mild conditions.
    Barzagli F; Lai S; Mani F
    ChemSusChem; 2015 Jan; 8(1):184-91. PubMed ID: 25410150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction mechanisms of aqueous monoethanolamine with carbon dioxide: a combined quantum chemical and molecular dynamics study.
    Hwang GS; Stowe HM; Paek E; Manogaran D
    Phys Chem Chem Phys; 2015 Jan; 17(2):831-9. PubMed ID: 25382097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonic anhydrase promotes the absorption rate of CO2 in post-combustion processes.
    Vinoba M; Bhagiyalakshmi M; Grace AN; Kim DH; Yoon Y; Nam SC; Baek IH; Jeong SK
    J Phys Chem B; 2013 May; 117(18):5683-90. PubMed ID: 23621860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward rational design of amine solutions for PCC applications: the kinetics of the reaction of CO2(aq) with cyclic and secondary amines in aqueous solution.
    Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M
    Environ Sci Technol; 2012 Jul; 46(13):7422-9. PubMed ID: 22620675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 capture in alkanolamine-RTIL blends via carbamate crystallization: route to efficient regeneration.
    Hasib-ur-Rahman M; Larachi F
    Environ Sci Technol; 2012 Oct; 46(20):11443-50. PubMed ID: 22963662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the capture of CO2 by substituted monoethanolamines: electronic effects of fluorine and methyl substituents.
    Gangarapu S; Marcelis AT; Zuilhof H
    Chemphyschem; 2012 Dec; 13(17):3973-80. PubMed ID: 22965750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration.
    Dai N; Shah AD; Hu L; Plewa MJ; McKague B; Mitch WA
    Environ Sci Technol; 2012 Sep; 46(17):9793-801. PubMed ID: 22831707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the origin of preferred bicarbonate production from carbon dioxide (CO₂) capture in aqueous 2-amino-2-methyl-1-propanol (AMP).
    Stowe HM; Vilčiauskas L; Paek E; Hwang GS
    Phys Chem Chem Phys; 2015 Nov; 17(43):29184-92. PubMed ID: 26466331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of amine structural characteristics on N-nitrosamine formation potential relevant to postcombustion CO2 capture systems.
    Dai N; Mitch WA
    Environ Sci Technol; 2013 Nov; 47(22):13175-83. PubMed ID: 24138561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Ma C; Pietrucci F; Andreoni W
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Dissolved Metals on N-Nitrosamine Formation under Amine-based CO2 Capture Conditions.
    Wang Z; Mitch WA
    Environ Sci Technol; 2015 Oct; 49(19):11974-81. PubMed ID: 26335609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional infrared correlation spectroscopy and principal component analysis on the carbonation of sterically hindered alkanolamines.
    Cheon Y; Jung YM; Lee J; Kim H; Im J; Cheong M; Kim HS; Park HS
    Chemphyschem; 2012 Oct; 13(14):3365-9. PubMed ID: 22821827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrosamine formation in amine scrubbing at desorber temperatures.
    Fine NA; Goldman MJ; Rochelle GT
    Environ Sci Technol; 2014; 48(15):8777-83. PubMed ID: 24956458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio study of CO2 capture mechanisms in aqueous monoethanolamine: reaction pathways for the direct interconversion of carbamate and bicarbonate.
    Matsuzaki Y; Yamada H; Chowdhury FA; Higashii T; Onoda M
    J Phys Chem A; 2013 Sep; 117(38):9274-81. PubMed ID: 24003832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An FTIR spectroscopic study on the effect of molecular structural variations on the CO2 absorption characteristics of heterocyclic amines.
    Robinson K; McCluskey A; Attalla MI
    Chemphyschem; 2011 Apr; 12(6):1088-99. PubMed ID: 21472963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.