These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25093449)

  • 1. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity.
    Walczak AP; Kramer E; Hendriksen PJ; Tromp P; Helsper JP; van der Zande M; Rietjens IM; Bouwmeester H
    Nanotoxicology; 2015 May; 9(4):453-61. PubMed ID: 25093449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model.
    Walczak AP; Kramer E; Hendriksen PJ; Helsdingen R; van der Zande M; Rietjens IM; Bouwmeester H
    Nanotoxicology; 2015; 9(7):886-94. PubMed ID: 25672814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model.
    Kloet SK; Walczak AP; Louisse J; van den Berg HH; Bouwmeester H; Tromp P; Fokkink RG; Rietjens IM
    Toxicol In Vitro; 2015 Oct; 29(7):1701-10. PubMed ID: 26145586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats.
    Walczak AP; Hendriksen PJ; Woutersen RA; van der Zande M; Undas AK; Helsdingen R; van den Berg HH; Rietjens IM; Bouwmeester H
    J Nanopart Res; 2015; 17(5):231. PubMed ID: 26028989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles.
    Schimpel C; Teubl B; Absenger M; Meindl C; Fröhlich E; Leitinger G; Zimmer A; Roblegg E
    Mol Pharm; 2014 Mar; 11(3):808-18. PubMed ID: 24502507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Toxicity of Polystyrene-Based Nanoparticles in
    Ozbek O; O Ulgen K; Ileri Ercan N
    Chem Res Toxicol; 2021 Apr; 34(4):1055-1068. PubMed ID: 33710856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier.
    George I; Naudin G; Boland S; Mornet S; Contremoulins V; Beugnon K; Martinon L; Lambert O; Baeza-Squiban A
    Nanoscale; 2015 Mar; 7(10):4529-44. PubMed ID: 25685900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biorelevant media resistant co-culture model mimicking permeability of human intestine.
    Antoine D; Pellequer Y; Tempesta C; Lorscheidt S; Kettel B; Tamaddon L; Jannin V; Demarne F; Lamprecht A; Béduneau A
    Int J Pharm; 2015 Mar; 481(1-2):27-36. PubMed ID: 25601199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size.
    Zhang W; Kalive M; Capco DG; Chen Y
    Nanotechnology; 2010 Sep; 21(35):355103. PubMed ID: 20693617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments.
    Bachler G; Losert S; Umehara Y; von Goetz N; Rodriguez-Lorenzo L; Petri-Fink A; Rothen-Rutishauser B; Hungerbuehler K
    Part Fibre Toxicol; 2015 Jun; 12():18. PubMed ID: 26116549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport.
    Abdelkhaliq A; van der Zande M; Punt A; Helsdingen R; Boeren S; Vervoort JJM; Rietjens IMCM; Bouwmeester H
    J Nanobiotechnology; 2018 Sep; 16(1):70. PubMed ID: 30219059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the Standardization of Intestinal In Vitro Advanced Barrier Model for Nanoparticles Uptake and Crossing: The SiO
    Vincentini O; Prota V; Cecchetti S; Bertuccini L; Tinari A; Iosi F; De Angelis I
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model.
    Thubagere A; Reinhard BM
    ACS Nano; 2010 Jul; 4(7):3611-22. PubMed ID: 20560658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow.
    Huang K; Boerhan R; Liu C; Jiang G
    Mol Pharm; 2017 Dec; 14(12):4618-4627. PubMed ID: 29096441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells.
    Phanse Y; Dunphy BM; Perry JL; Airs PM; Paquette CC; Carlson JO; Xu J; Luft JC; DeSimone JM; Beaty BJ; Bartholomay LC
    PLoS Negl Trop Dis; 2015 May; 9(5):e0003735. PubMed ID: 25996390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells.
    Murali K; Kenesei K; Li Y; Demeter K; Környei Z; Madarász E
    Nanoscale; 2015 Mar; 7(9):4199-210. PubMed ID: 25673096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.
    Bagre AP; Jain K; Jain NK
    Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure.
    Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A
    Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of microbicide nanoparticles with a simulated vaginal fluid.
    das Neves J; Rocha CM; Gonçalves MP; Carrier RL; Amiji M; Bahia MF; Sarmento B
    Mol Pharm; 2012 Nov; 9(11):3347-56. PubMed ID: 23003680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells.
    Monti DM; Guarnieri D; Napolitano G; Piccoli R; Netti P; Fusco S; Arciello A
    J Biotechnol; 2015 Jan; 193():3-10. PubMed ID: 25444875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.