These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 25093451)

  • 21. Proteomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity.
    Sund J; Alenius H; Vippola M; Savolainen K; Puustinen A
    ACS Nano; 2011 Jun; 5(6):4300-9. PubMed ID: 21528863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the impact of more realistic low-dose, prolonged engineered nanomaterial exposure on genotoxicity using 3D models of the human liver.
    Llewellyn SV; Conway GE; Zanoni I; Jørgensen AK; Shah UK; Seleci DA; Keller JG; Kim JW; Wohlleben W; Jensen KA; Costa A; Jenkins GJS; Clift MJD; Doak SH
    J Nanobiotechnology; 2021 Jun; 19(1):193. PubMed ID: 34183029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable resistive pulse sensing: potential applications in nanomedicine.
    Sivakumaran M; Platt M
    Nanomedicine (Lond); 2016 Aug; 11(16):2197-214. PubMed ID: 27480794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing.
    Sikora A; Shard AG; Minelli C
    Langmuir; 2016 Mar; 32(9):2216-24. PubMed ID: 26869024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches.
    Kim YH; Boykin E; Stevens T; Lavrich K; Gilmour MI
    J Nanobiotechnology; 2014 Nov; 12():47. PubMed ID: 25424549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity.
    Cohen JM; Beltran-Huarac J; Pyrgiotakis G; Demokritou P
    NanoImpact; 2018 Apr; 10():81-86. PubMed ID: 29479575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing.
    Vogel R; Pal AK; Jambhrunkar S; Patel P; Thakur SS; Reátegui E; Parekh HS; Saá P; Stassinopoulos A; Broom MF
    Sci Rep; 2017 Dec; 7(1):17479. PubMed ID: 29234015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispersion and Dosimetric Challenges of Hydrophobic Carbon-Based Nanoparticles in In Vitro Cellular Studies.
    Lizonova D; Trivanovic U; Demokritou P; Kelesidis GA
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods.
    Varenne F; Makky A; Gaucher-Delmas M; Violleau F; Vauthier C
    Pharm Res; 2016 May; 33(5):1220-34. PubMed ID: 26864858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening.
    Nel A; Xia T; Meng H; Wang X; Lin S; Ji Z; Zhang H
    Acc Chem Res; 2013 Mar; 46(3):607-21. PubMed ID: 22676423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Species sensitivity distributions for engineered nanomaterials.
    Garner KL; Suh S; Lenihan HS; Keller AA
    Environ Sci Technol; 2015 May; 49(9):5753-9. PubMed ID: 25875138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans.
    Callaghan NI; MacCormack TJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Mar; 193():30-41. PubMed ID: 28017784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beyond the passive interactions at the nano-bio interface: evidence of Cu metalloprotein-driven oxidative dissolution of silver nanoparticles.
    Freitas DN; Martinolich AJ; Amaris ZN; Wheeler KE
    J Nanobiotechnology; 2016 Jan; 14():7. PubMed ID: 26801765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interference of engineered nanomaterials in flow cytometry: A case study.
    Bohmer N; Rippl A; May S; Walter A; Heo MB; Kwak M; Roesslein M; Song NW; Wick P; Hirsch C
    Colloids Surf B Biointerfaces; 2018 Dec; 172():635-645. PubMed ID: 30243217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial.
    Dan M; Tseng MT; Wu P; Unrine JM; Grulke EA; Yokel RA
    Int J Nanomedicine; 2012; 7():4023-36. PubMed ID: 22888240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental and health effects of nanomaterials in nanotextiles and façade coatings.
    Som C; Wick P; Krug H; Nowack B
    Environ Int; 2011 Aug; 37(6):1131-42. PubMed ID: 21397331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of engineered nanomaterials (Ag, CeO
    Loosli F; Wang J; Sikder M; Afshinnia K; Baalousha M
    Sci Total Environ; 2020 May; 715():136927. PubMed ID: 32007892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Humic acids modify the pulse size distributions in the characterization of plastic microparticles by Tunable Resistive Pulse Sensing.
    Vázquez Juiz ML; Soto Gómez D; Pérez Rodríguez P; Paradelo M; López Periago JE
    J Contam Hydrol; 2018 Nov; 218():59-69. PubMed ID: 30361114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.