These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 25093545)
1. Facile hydrothermal synthesis of nanostructured hollow iron-cerium alkoxides and their superior arsenic adsorption performance. Chen B; Zhu Z; Liu S; Hong J; Ma J; Qiu Y; Chen J ACS Appl Mater Interfaces; 2014 Aug; 6(16):14016-25. PubMed ID: 25093545 [TBL] [Abstract][Full Text] [Related]
2. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Zhang G; Ren Z; Zhang X; Chen J Water Res; 2013 Aug; 47(12):4022-31. PubMed ID: 23571113 [TBL] [Abstract][Full Text] [Related]
3. Facile inverse micelle fabrication of magnetic ordered mesoporous iron cerium bimetal oxides with excellent performance for arsenic removal from water. Wen Z; Lu J; Zhang Y; Cheng G; Huang S; Chen J; Xu R; Ming YA; Wang Y; Chen R J Hazard Mater; 2020 Feb; 383():121172. PubMed ID: 31522062 [TBL] [Abstract][Full Text] [Related]
4. Nanocasted synthesis of ordered mesoporous cerium iron mixed oxide and its excellent performances for As(V) and Cr(VI) removal from aqueous solutions. Chen B; Zhu Z; Hong J; Wen Z; Ma J; Qiu Y; Chen J Dalton Trans; 2014 Jul; 43(28):10767-77. PubMed ID: 24878983 [TBL] [Abstract][Full Text] [Related]
5. Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances. Liu S; Kang S; Wang G; Zhao H; Cai W J Colloid Interface Sci; 2015 Nov; 458():94-102. PubMed ID: 26210099 [TBL] [Abstract][Full Text] [Related]
6. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Zhang G; Qu J; Liu H; Liu R; Wu R Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991 [TBL] [Abstract][Full Text] [Related]
7. Facile template-free fabrication of hollow nestlike α-Fe₂O₃ nanostructures for water treatment. Wei Z; Xing R; Zhang X; Liu S; Yu H; Li P ACS Appl Mater Interfaces; 2013 Feb; 5(3):598-604. PubMed ID: 23131138 [TBL] [Abstract][Full Text] [Related]
8. Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. Tang W; Li Q; Gao S; Shang JK J Hazard Mater; 2011 Aug; 192(1):131-8. PubMed ID: 21684075 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Lakshmanan D; Clifford DA; Samanta G Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038 [TBL] [Abstract][Full Text] [Related]
10. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Tang W; Su Y; Li Q; Gao S; Shang JK Water Res; 2013 Jul; 47(11):3624-34. PubMed ID: 23726698 [TBL] [Abstract][Full Text] [Related]
11. Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal. Wen Z; Zhang Y; Guo S; Chen R J Colloid Interface Sci; 2017 Jan; 486():211-218. PubMed ID: 27710823 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of mesoporous Ce-Fe bimetal oxide and its enhanced adsorption of arsenate from aqueous solutions. Chen B; Zhu Z; Guo Y; Qiu Y; Zhao J J Colloid Interface Sci; 2013 May; 398():142-51. PubMed ID: 23473573 [TBL] [Abstract][Full Text] [Related]
13. Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent. Zhang Y; Yang M; Huang X Chemosphere; 2003 Jun; 51(9):945-52. PubMed ID: 12697185 [TBL] [Abstract][Full Text] [Related]
14. Facile and economical synthesis of large hollow ferrites and their applications in adsorption for As(V) and Cr(VI). Dui J; Zhu G; Zhou S ACS Appl Mater Interfaces; 2013 Oct; 5(20):10081-9. PubMed ID: 24066850 [TBL] [Abstract][Full Text] [Related]
15. Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. Cao CY; Qu J; Yan WS; Zhu JF; Wu ZY; Song WG Langmuir; 2012 Mar; 28(9):4573-9. PubMed ID: 22316432 [TBL] [Abstract][Full Text] [Related]
16. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Hu L; Chen Q Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788 [TBL] [Abstract][Full Text] [Related]
17. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions. Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931 [TBL] [Abstract][Full Text] [Related]
18. Separation and determination of arsenic species in water by selective exchange and hybrid resins. Ben Issa N; Rajaković-Ognjanović VN; Marinković AD; Rajaković LV Anal Chim Acta; 2011 Nov; 706(1):191-8. PubMed ID: 21995928 [TBL] [Abstract][Full Text] [Related]
19. The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO2 anatase [101] surface. Wei Z; Liang K; Wu Y; Zou Y; Zuo J; Arriagada DC; Pan Z; Hu G J Colloid Interface Sci; 2016 Jan; 462():252-9. PubMed ID: 26469543 [TBL] [Abstract][Full Text] [Related]
20. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation--precipitation parameters. Tresintsi S; Simeonidis K; Vourlias G; Stavropoulos G; Mitrakas M Water Res; 2012 Oct; 46(16):5255-67. PubMed ID: 22824674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]