These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 25093545)

  • 21. Facile synthesis of alumina hollow microspheres via trisodium citrate-mediated hydrothermal process and their adsorption performances for p-nitrophenol from aqueous solutions.
    Zhou J; Wang L; Zhang Z; Yu J
    J Colloid Interface Sci; 2013 Mar; 394():509-14. PubMed ID: 23276687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel 3D hierarchical cotton-candy-like CuO: surfactant-free solvothermal synthesis and application in As(III) removal.
    Yu XY; Xu RX; Gao C; Luo T; Jia Y; Liu JH; Huang XJ
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1954-62. PubMed ID: 22458408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles.
    Martinson CA; Reddy KJ
    J Colloid Interface Sci; 2009 Aug; 336(2):406-11. PubMed ID: 19477461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced arsenic removal from water by hierarchically porous CeO₂-ZrO₂ nanospheres: role of surface- and structure-dependent properties.
    Xu W; Wang J; Wang L; Sheng G; Liu J; Yu H; Huang XJ
    J Hazard Mater; 2013 Sep; 260():498-507. PubMed ID: 23811372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent.
    Wu X; Zhang Y; Dou X; Yang M
    Chemosphere; 2007 Nov; 69(11):1758-64. PubMed ID: 17624402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic.
    Chun J; Lee H; Lee SH; Hong SW; Lee J; Lee C; Lee J
    Chemosphere; 2012 Nov; 89(10):1230-7. PubMed ID: 22884493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic.
    Makris KC; Sarkar D; Datta R
    Chemosphere; 2006 Jul; 64(5):730-41. PubMed ID: 16405955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (alpha-FeOOH).
    Zhang JS; Stanforth RS; Pehkonen SO
    J Colloid Interface Sci; 2007 Feb; 306(1):16-21. PubMed ID: 17056055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: preparation, formation mechanism, magnetic property, and application in water treatment.
    Xu JS; Zhu YJ
    J Colloid Interface Sci; 2012 Nov; 385(1):58-65. PubMed ID: 22846645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration.
    Shinde RN; Pandey AK; Acharya R; Guin R; Das SK; Rajurkar NS; Pujari PK
    Water Res; 2013 Jun; 47(10):3497-506. PubMed ID: 23622983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-step self-assembly of iron oxide into three-dimensional hollow magnetic porous microspheres and their toxic ion adsorption mechanism.
    Jia Y; Yu XY; Luo T; Zhang MY; Liu JH; Huang XJ
    Dalton Trans; 2013 Feb; 42(5):1921-8. PubMed ID: 23174850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tetravalent manganese feroxyhyte: a novel nanoadsorbent equally selective for As(III) and As(V) removal from drinking water.
    Tresintsi S; Simeonidis K; Estradé S; Martinez-Boubeta C; Vourlias G; Pinakidou F; Katsikini M; Paloura EC; Stavropoulos G; Mitrakas M
    Environ Sci Technol; 2013 Sep; 47(17):9699-705. PubMed ID: 23888913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal.
    Kleinert S; Muehe EM; Posth NR; Dippon U; Daus B; Kappler A
    Environ Sci Technol; 2011 Sep; 45(17):7533-41. PubMed ID: 21761933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water.
    Hlavay J; Polyák K
    J Colloid Interface Sci; 2005 Apr; 284(1):71-7. PubMed ID: 15752786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of arsenate from water by using an Fe-Ce oxide adsorbent: effects of coexistent fluoride and phosphate.
    Zhang Y; Dou XM; Yang M; He H; Jing CY; Wu ZY
    J Hazard Mater; 2010 Jul; 179(1-3):208-14. PubMed ID: 20303658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide.
    Pena ME; Korfiatis GP; Patel M; Lippincott L; Meng X
    Water Res; 2005 Jun; 39(11):2327-37. PubMed ID: 15896821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New inorganic (an)ion exchangers based on Mg-Al hydrous oxides: (alkoxide-free) sol-gel synthesis and characterisation.
    Chubar N
    J Colloid Interface Sci; 2011 May; 357(1):198-209. PubMed ID: 21345442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of arsenic(III) and arsenic(V) removal from waters using ferric hydroxide supported on silica gel prepared at low pH.
    Ciftçi TD; Yayayürük O; Henden E
    Environ Technol; 2011; 32(3-4):341-51. PubMed ID: 21780702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron coated pottery granules for arsenic removal from drinking water.
    Dong L; Zinin PV; Cowen JP; Ming LC
    J Hazard Mater; 2009 Sep; 168(2-3):626-32. PubMed ID: 19356847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water.
    Nieto-Delgado C; Rangel-Mendez JR
    Water Res; 2012 Jun; 46(9):2973-82. PubMed ID: 22483710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.