These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25093575)

  • 1. Structural modeling of iron halogenases: synthesis and reactivity of halide-iron(IV)-oxo compounds.
    Planas O; Clémancey M; Latour JM; Company A; Costas M
    Chem Commun (Camb); 2014 Sep; 50(74):10887-90. PubMed ID: 25093575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insight into halide oxidation by non-heme iron complexes. Haloperoxidase versus halogenase activity.
    Vardhaman AK; Barman P; Kumar S; Sastri CV; Kumar D; de Visser SP
    Chem Commun (Camb); 2013 Dec; 49(93):10926-8. PubMed ID: 24136302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Non-Heme Iron Halogenases: High-Spin Oxoiron(IV)-Halide Complexes That Halogenate C-H Bonds.
    Puri M; Biswas AN; Fan R; Guo Y; Que L
    J Am Chem Soc; 2016 Mar; 138(8):2484-7. PubMed ID: 26875530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aliphatic C-H Bond Halogenation by Iron(II)-α-Keto Acid Complexes and O
    Jana RD; Sheet D; Chatterjee S; Paine TK
    Inorg Chem; 2018 Aug; 57(15):8769-8777. PubMed ID: 30009593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the cis-oxo-labile binding site motif of non-heme iron oxygenases: water exchange and oxidation reactivity of a non-heme iron(IV)-oxo compound bearing a tripodal tetradentate ligand.
    Company A; Prat I; Frisch JR; Mas-Ballesté R; Güell M; Juhász G; Ribas X; Münck E; Luis JM; Que L; Costas M
    Chemistry; 2011 Feb; 17(5):1622-34. PubMed ID: 21268165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the reactivity of nonheme iron(IV)-oxo versus iron(IV)-imido complexes: which is the better oxidant?
    Vardhaman AK; Barman P; Kumar S; Sastri CV; Kumar D; de Visser SP
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12288-92. PubMed ID: 24222577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties and reactivities of nonheme iron(IV)-oxo versus iron(V)-oxo: long-range electron transfer versus hydrogen atom abstraction.
    Karamzadeh B; Singh D; Nam W; Kumar D; de Visser SP
    Phys Chem Chem Phys; 2014 Nov; 16(41):22611-22. PubMed ID: 25231726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does a higher metal oxidation state necessarily imply higher reactivity toward H-atom transfer? A computational study of C-H bond oxidation by high-valent iron-oxo and -nitrido complexes.
    Geng C; Ye S; Neese F
    Dalton Trans; 2014 Apr; 43(16):6079-86. PubMed ID: 24492533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-triggered chemoselective halogenation of aliphatic C-H bonds with nonheme Fe
    Pagès-Vilà N; Gamba I; Clémancey M; Latour JM; Company A; Costas M
    J Inorg Biochem; 2024 Jun; 259():112643. PubMed ID: 38924872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-catalyzed halogenation of alkanes: modeling of nonheme halogenases by experiment and DFT calculations.
    Comba P; Wunderlich S
    Chemistry; 2010 Jun; 16(24):7293-9. PubMed ID: 20458709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-H bond activation of methanol and ethanol by a high-spin Fe(IV)O biomimetic complex.
    Donald WA; McKenzie CJ; O'Hair RA
    Angew Chem Int Ed Engl; 2011 Aug; 50(36):8379-83. PubMed ID: 21717542
    [No Abstract]   [Full Text] [Related]  

  • 12. Non-heme iron(II/III) complexes that model the reactivity of lipoxygenase with a redox switch.
    Mei F; Ou C; Wu G; Cao L; Han F; Meng X; Li J; Li D; Liao Z
    Dalton Trans; 2010 May; 39(18):4267-9. PubMed ID: 20422083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does hydrogen-bonding donation to manganese(IV)-oxo and iron(IV)-oxo oxidants affect the oxygen-atom transfer ability? A computational study.
    Latifi R; Sainna MA; Rybak-Akimova EV; de Visser SP
    Chemistry; 2013 Mar; 19(12):4058-68. PubMed ID: 23362213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity comparison of high-valent iron(IV)-oxo complexes bearing N-tetramethylated cyclam ligands with different ring size.
    Hong S; So H; Yoon H; Cho KB; Lee YM; Fukuzumi S; Nam W
    Dalton Trans; 2013 Jun; 42(22):7842-5. PubMed ID: 23588673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural perspective on enzymatic halogenation.
    Blasiak LC; Drennan CL
    Acc Chem Res; 2009 Jan; 42(1):147-55. PubMed ID: 18774824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450.
    Tahsini L; Bagherzadeh M; Nam W; de Visser SP
    Inorg Chem; 2009 Jul; 48(14):6661-9. PubMed ID: 19469505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron(II) vacataporphyrins: a variable annulene conformation inside a regular porphyrin frame.
    Pacholska-Dudziak E; Gaworek A; Latos-Grażyński L
    Inorg Chem; 2011 Nov; 50(21):10956-65. PubMed ID: 21951234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Structure of the Ferryl Intermediate in the α-Ketoglutarate Dependent Non-Heme Iron Halogenase SyrB2: Contributions to H Atom Abstraction Reactivity.
    Srnec M; Wong SD; Matthews ML; Krebs C; Bollinger JM; Solomon EI
    J Am Chem Soc; 2016 Apr; 138(15):5110-22. PubMed ID: 27021969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of an alternative to the H-atom abstraction mechanism in methane C-H bond activation by nonheme iron(IV)-oxo oxidants.
    Tang H; Guan J; Liu H; Huang X
    Dalton Trans; 2013 Jul; 42(28):10260-70. PubMed ID: 23732441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.