These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 25093915)
1. Efficacy of olive mill wastewater for protecting Bacillus thuringiensis formulation from UV radiations. Jallouli W; Sellami S; Sellami M; Tounsi S Acta Trop; 2014 Dec; 140():19-25. PubMed ID: 25093915 [TBL] [Abstract][Full Text] [Related]
2. UV protectants for the biopesticide based on Bacillus sphaericus Neide and their role in protecting the binary toxins from UV radiation. Hadapad AB; Hire RS; Vijayalakshmi N; Dongre TK J Invertebr Pathol; 2009 Mar; 100(3):147-52. PubMed ID: 19167401 [TBL] [Abstract][Full Text] [Related]
3. Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Maghsoudi S; Jalali E Sci Rep; 2017 Sep; 7(1):11019. PubMed ID: 28887475 [TBL] [Abstract][Full Text] [Related]
4. Photostabilization of Bacillus thuringiensis fermented wastewater and wastewater sludge based biopesticides using additives. Adjalle KD; Brar SK; Tyagi RD; Valéro JR; Surampalli RY Acta Trop; 2009 Jul; 111(1):7-14. PubMed ID: 19100704 [TBL] [Abstract][Full Text] [Related]
5. Evidence of the involvement of E358, A498 and C571 of a new Cry1Ac delta-endotoxin of Bacillus thuringiensis in its high insecticidal activity against Ephestia kuehniella. Saadaoui I; Miled N; Jaoua S Mol Biotechnol; 2010 May; 45(1):65-70. PubMed ID: 20084474 [TBL] [Abstract][Full Text] [Related]
6. Screening of different adjuvants for wastewater/wastewater sludge-based Bacillus thuringiensis formulations. Brar SK; Verma M; Tyagi RD; Valéro JR; Surampalli RY J Econ Entomol; 2006 Aug; 99(4):1065-79. PubMed ID: 16937657 [TBL] [Abstract][Full Text] [Related]
7. A new Tunisian strain of Bacillus thuringiensis kurstaki having high insecticidal activity and delta-endotoxin yield. Saadaoui I; Rouis S; Jaoua S Arch Microbiol; 2009 Apr; 191(4):341-8. PubMed ID: 19214476 [TBL] [Abstract][Full Text] [Related]
8. Ultraviolet protection of Bacillus thuringiensis through microencapsulation with Pickering emulsion method. Jalali E; Maghsoudi S; Noroozian E Sci Rep; 2020 Nov; 10(1):20633. PubMed ID: 33244110 [TBL] [Abstract][Full Text] [Related]
9. Melanin pigment formation and increased UV resistance in Bacillus thuringiensis following high temperature induction. Ruan L; Yu Z; Fang B; He W; Wang Y; Shen P Syst Appl Microbiol; 2004 May; 27(3):286-9. PubMed ID: 15214633 [TBL] [Abstract][Full Text] [Related]
10. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Myasnik M; Manasherob R; Ben-Dov E; Zaritsky A; Margalith Y; Barak Z Curr Microbiol; 2001 Aug; 43(2):140-3. PubMed ID: 11391479 [TBL] [Abstract][Full Text] [Related]
11. Characterization of melanin produced by a wild-type strain of Bacillus thuringiensis. Chen Y; Deng Y; Wang J; Cai J; Ren G J Gen Appl Microbiol; 2004 Aug; 50(4):183-8. PubMed ID: 15754243 [TBL] [Abstract][Full Text] [Related]
13. Influence of Ephestia kuehniella stage larvae on the potency of Bacillus thuringiensis Cry1Aa delta-endotoxin. Abdelmalek N; Sellami S; Kallassy-Awad M; Tounsi MF; Mebarkia A; Tounsi S; Rouis S Pestic Biochem Physiol; 2017 Apr; 137():91-97. PubMed ID: 28364809 [TBL] [Abstract][Full Text] [Related]
14. Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in Anabaena PCC 7120. Manasherob R; Ben-Dov E; Xiaoqiang W; Boussiba S; Zaritsky A Curr Microbiol; 2002 Sep; 45(3):217-20. PubMed ID: 12177745 [TBL] [Abstract][Full Text] [Related]
15. Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance. Sanchis V; Gohar M; Chaufaux J; Arantes O; Meier A; Agaisse H; Cayley J; Lereclus D Appl Environ Microbiol; 1999 Sep; 65(9):4032-9. PubMed ID: 10473413 [TBL] [Abstract][Full Text] [Related]
16. Selection and characterisation of an HD1-like Bacillus thuringiensis isolate with a high insecticidal activity against Spodoptera littoralis (Lepidoptera: Noctuidae). Azzouz H; Kebaili-Ghribi J; ben Farhat-Touzri D; Daoud F; Fakhfakh I; Tounsi S; Jaoua S Pest Manag Sci; 2014 Aug; 70(8):1192-201. PubMed ID: 24124020 [TBL] [Abstract][Full Text] [Related]
17. Enhancing UV radiation protection of Bacillus thuringiensis formulations using sulfur quantum dots: synthesis and efficacy evaluation. Jalali E; Maghsoudi S Sci Rep; 2024 Jul; 14(1):17384. PubMed ID: 39075143 [TBL] [Abstract][Full Text] [Related]
18. Expression of mel gene improves the UV resistance of Bacillus thuringiensis. Zhang JT; Yan JP; Zheng DS; Sun YJ; Yuan ZM J Appl Microbiol; 2008 Jul; 105(1):151-7. PubMed ID: 18266703 [TBL] [Abstract][Full Text] [Related]
19. Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila. BenFarhat D; Dammak M; Khedher SB; Mahfoudh S; Kammoun S; Tounsi S J Invertebr Pathol; 2013 Sep; 114(1):71-5. PubMed ID: 23747825 [TBL] [Abstract][Full Text] [Related]
20. A novel method for biosynthesis of different polymorphs of TiO Jalali E; Maghsoudi S; Noroozian E Sci Rep; 2020 Jan; 10(1):426. PubMed ID: 31949264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]