BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 2509477)

  • 21. Effect of nucleotides on translocation of sugar nucleotides and adenosine 3'-phosphate 5'-phosphosulfate into Golgi apparatus vesicles.
    Capasso JM; Hirschberg CB
    Biochim Biophys Acta; 1984 Oct; 777(1):133-9. PubMed ID: 6487615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H]N-acetylmannosamine. I. Observations in hepatocytes.
    Bennett G; O'Shaughnessy D
    J Cell Biol; 1981 Jan; 88(1):1-15. PubMed ID: 7204482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool.
    Muchmore EA; Milewski M; Varki A; Diaz S
    J Biol Chem; 1989 Dec; 264(34):20216-23. PubMed ID: 2684973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism.
    Bame KJ; Rome LH
    J Biol Chem; 1985 Sep; 260(20):11293-9. PubMed ID: 3897232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. O-acetylation and de-O-acetylation of sialic acids. Sialic acid esterases of diverse evolutionary origins have serine active sites and essential arginine residues.
    Hayes BK; Varki A
    J Biol Chem; 1989 Nov; 264(32):19443-8. PubMed ID: 2509478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterisation of the enzymatic 4-O-acetylation of sialic acids in microsomes from equine submandibular glands.
    Tiralongo J; Schmid H; Thun R; Iwersen M; Schauer R
    Glycoconj J; 2000 Dec; 17(12):849-58. PubMed ID: 11511809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sialic acid storage diseases. A multiple lysosomal transport defect for acidic monosaccharides.
    Mancini GM; Beerens CE; Aula PP; Verheijen FW
    J Clin Invest; 1991 Apr; 87(4):1329-35. PubMed ID: 2010546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of exogenously added acetyl coenzyme A by intact isolated lysosomes.
    Rome LH; Hill DF; Bame KJ; Crain LR
    J Biol Chem; 1983 Mar; 258(5):3006-11. PubMed ID: 6402508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural, immunological, and biosynthetic studies of a sialic acid-specific O-acetylesterase from rat liver.
    Butor C; Higa HH; Varki A
    J Biol Chem; 1993 May; 268(14):10207-13. PubMed ID: 8486688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis of oligosaccharides in intact Golgi preparations from rat liver. Analysis of N-linked glycans labeled by UDP-[6-3H]N-acetylglucosamine.
    Hayes BK; Freeze HH; Varki A
    J Biol Chem; 1993 Aug; 268(22):16139-54. PubMed ID: 8344899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sialic acid uptake by fibroblasts.
    Hirschberg CB; Goodman SR; Green C
    Biochemistry; 1976 Aug; 15(16):3591-9. PubMed ID: 821521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic and spatial interrelationships between ganglioside glycosyltransferases and O-acetyltransferase(s) in human melanoma cells.
    Sjoberg ER; Varki A
    J Biol Chem; 1993 May; 268(14):10185-96. PubMed ID: 8486686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of galactosylation in the Golgi apparatus. A Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes.
    Deutscher SL; Hirschberg CB
    J Biol Chem; 1986 Jan; 261(1):96-100. PubMed ID: 3510203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H]N-acetylmannosamine. II. Observations in tissues other than liver.
    Bennett G; Kan FW; O'Shaughnessy D
    J Cell Biol; 1981 Jan; 88(1):16-28. PubMed ID: 7204485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycolipid and glycoprotein transport through the Golgi complex are similar biochemically and kinetically. Reconstitution of glycolipid transport in a cell free system.
    Wattenberg BW
    J Cell Biol; 1990 Aug; 111(2):421-8. PubMed ID: 2166051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The metabolism of O-acyl-N-acylneuraminic acids. Biosynthesis of O-acylated sialic acids in bovine and equine submandibular glands.
    Corfield AP; Ferreira do Amaral C; Wember M; Schauer R
    Eur J Biochem; 1976 Sep; 68(2):597-610. PubMed ID: 976276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autoradiographic demonstration of in vivo sialylation of endogenous acceptors at the microvillar surface of intestinal columnar cells after intraluminal administration of CMP-[3H]-sialic acid.
    Bennett G; Haddad A; Leblond CP
    J Histochem Cytochem; 1987 Aug; 35(8):861-4. PubMed ID: 3110265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Terminal glycosylation in rat hepatic Golgi fractions: heterogeneous locations for sialic acid and galactose acceptors and their transferases.
    Bergeron JJ; Paiement J; Khan MN; Smith CE
    Biochim Biophys Acta; 1985 Dec; 821(3):393-403. PubMed ID: 2934093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport.
    Deutscher SL; Nuwayhid N; Stanley P; Briles EI; Hirschberg CB
    Cell; 1984 Dec; 39(2 Pt 1):295-9. PubMed ID: 6498937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing.
    Shi WX; Chammas R; Varki NM; Powell L; Varki A
    J Biol Chem; 1996 Dec; 271(49):31526-32. PubMed ID: 8940168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.