BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25095598)

  • 1. Exportability of the mitochondrial oxidative phosphorylation machinery into myelin sheath.
    Morelli A; Ravera S; Calzia D; Panfoli I
    Theor Biol Forum; 2011; 104(2):67-74. PubMed ID: 25095598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tricarboxylic acid cycle-sustained oxidative phosphorylation in isolated myelin vesicles.
    Ravera S; Bartolucci M; Calzia D; Aluigi MG; Ramoino P; Morelli A; Panfoli I
    Biochimie; 2013 Nov; 95(11):1991-8. PubMed ID: 23851157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxydative phosphorylation in sciatic nerve myelin and its impairment in a model of dysmyelinating peripheral neuropathy.
    Ravera S; Nobbio L; Visigalli D; Bartolucci M; Calzia D; Fiorese F; Mancardi G; Schenone A; Morelli A; Panfoli I
    J Neurochem; 2013 Jul; 126(1):82-92. PubMed ID: 23578247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aerobic mitochondrial ATP synthesis from a comprehensive point of view.
    Morelli AM; Ravera S; Panfoli I
    Open Biol; 2020 Oct; 10(10):200224. PubMed ID: 33081639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress in myelin sheath: The other face of the extramitochondrial oxidative phosphorylation ability.
    Ravera S; Bartolucci M; Cuccarolo P; Litamè E; Illarcio M; Calzia D; Degan P; Morelli A; Panfoli I
    Free Radic Res; 2015; 49(9):1156-64. PubMed ID: 25971447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Expression of Electron Transport Chain and FoF1-ATP Synthase in Optic Nerve Myelin Sheath.
    Bartolucci M; Ravera S; Garbarino G; Ramoino P; Ferrando S; Calzia D; Candiani S; Morelli A; Panfoli I
    Neurochem Res; 2015 Nov; 40(11):2230-41. PubMed ID: 26334391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support of Nerve Conduction by Respiring Myelin Sheath: Role of Connexons.
    Ravera S; Bartolucci M; Adriano E; Garbati P; Ferrando S; Ramoino P; Calzia D; Morelli A; Balestrino M; Panfoli I
    Mol Neurobiol; 2016 May; 53(4):2468-79. PubMed ID: 26033217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Acquisition of the Aerobic Metabolic Capacity by Myelin, during its Development.
    Ravera S; Bartolucci M; Garbati P; Ferrando S; Calzia D; Ramoino P; Balestrino M; Morelli A; Panfoli I
    Mol Neurobiol; 2016 Dec; 53(10):7048-7056. PubMed ID: 26676569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for aerobic ATP synthesis in isolated myelin vesicles.
    Ravera S; Panfoli I; Calzia D; Aluigi MG; Bianchini P; Diaspro A; Mancardi G; Morelli A
    Int J Biochem Cell Biol; 2009 Jul; 41(7):1581-91. PubMed ID: 19401152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypothesis of an energetic function for myelin.
    Morelli A; Ravera S; Panfoli I
    Cell Biochem Biophys; 2011 Sep; 61(1):179-87. PubMed ID: 21455684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is myelin a mitochondrion?
    Harris JJ; Attwell D
    J Cereb Blood Flow Metab; 2013 Jan; 33(1):33-6. PubMed ID: 23072751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation.
    Fosslien E
    Ann Clin Lab Sci; 2001 Jan; 31(1):25-67. PubMed ID: 11314862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Myelin Sheath F(o)F(1)-ATP synthase and its regulation by IF(1).
    Ravera S; Panfoli I; Aluigi MG; Calzia D; Morelli A
    Cell Biochem Biophys; 2011 Mar; 59(2):63-70. PubMed ID: 20809181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient extra-mitochondrial aerobic ATP synthesis in neuronal membrane systems.
    Ravera S; Bartolucci M; Calzia D; Morelli AM; Panfoli I
    J Neurosci Res; 2021 Sep; 99(9):2250-2260. PubMed ID: 34085315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling.
    Yin X; Kidd GJ; Ohno N; Perkins GA; Ellisman MH; Bastian C; Brunet S; Baltan S; Trapp BD
    J Cell Biol; 2016 Nov; 215(4):531-542. PubMed ID: 27872255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction to mitochondrial oxidative phosphorylation.
    Kadenbach B
    Adv Exp Med Biol; 2012; 748():1-11. PubMed ID: 22729852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why do premature newborn infants display elevated blood adenosine levels?
    Panfoli I; Cassanello M; Bruschettini M; Colella M; Cerone R; Ravera S; Calzia D; Candiano G; Ramenghi L
    Med Hypotheses; 2016 May; 90():53-6. PubMed ID: 27063086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of heme synthesis in myelin as potential trigger of multiple sclerosis.
    Morelli A; Ravera S; Calzia D; Panfoli I
    Med Hypotheses; 2012 Jun; 78(6):707-10. PubMed ID: 22398388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assaying ATP synthesis in cultured cells: a valuable tool for the diagnosis of patients with mitochondrial disorders.
    Rizza T; Vazquez-Memije ME; Meschini MC; Bianchi M; Tozzi G; Nesti C; Piemonte F; Bertini E; Santorelli FM; Carrozzo R
    Biochem Biophys Res Commun; 2009 May; 383(1):58-62. PubMed ID: 19332025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial bioenergetic background confers a survival advantage to HepG2 cells in response to chemotherapy.
    Loiseau D; Morvan D; Chevrollier A; Demidem A; Douay O; Reynier P; Stepien G
    Mol Carcinog; 2009 Aug; 48(8):733-41. PubMed ID: 19347860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.