These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25095720)

  • 1. Rotational and peak torque stiffness of rugby shoes.
    Ballal MS; Usuelli FG; Montrasio UA; Molloy A; La Barbera L; Villa T; Banfi G
    Foot (Edinb); 2014 Sep; 24(3):107-10. PubMed ID: 25095720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Football playing surface and shoe design affect rotational traction.
    Villwock MR; Meyer EG; Powell JW; Fouty AJ; Haut RC
    Am J Sports Med; 2009 Mar; 37(3):518-25. PubMed ID: 19168808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peak torque and rotational stiffness developed at the shoe-surface interface: the effect of shoe type and playing surface.
    Livesay GA; Reda DR; Nauman EA
    Am J Sports Med; 2006 Mar; 34(3):415-22. PubMed ID: 16399930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotational stiffness of football shoes influences talus motion during external rotation of the foot.
    Wei F; Meyer EG; Braman JE; Powell JW; Haut RC
    J Biomech Eng; 2012 Apr; 134(4):041002. PubMed ID: 22667677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torsional injuries of the lower limb: an analysis of the frictional torque between different types of football turf and the shoe outsole.
    Smeets K; Jacobs P; Hertogs R; Luyckx JP; Innocenti B; Corten K; Ekstrand J; Bellemans J
    Br J Sports Med; 2012 Dec; 46(15):1078-83. PubMed ID: 22842236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational stiffness of American football shoes affects ankle biomechanics and injury severity.
    Button KD; Braman JE; Davison MA; Wei F; Schaeffer MC; Haut RC
    J Biomech Eng; 2015 Jun; 137(6):061004. PubMed ID: 25751589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does soccer cleat design influence the rotational interaction with the playing surface?
    Galbusera F; Tornese DZ; Anasetti F; Bersini S; Volpi P; La Barbera L; Villa T
    Sports Biomech; 2013 Sep; 12(3):293-301. PubMed ID: 24245054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of synthetic playing surfaces, the shoe-surface interface, and lower extremity injuries in athletes.
    Taylor SA; Fabricant PD; Khair MM; Haleem AM; Drakos MC
    Phys Sportsmed; 2012 Nov; 40(4):66-72. PubMed ID: 23306416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologic axial load, frictional resistance, and the football shoe-surface interface.
    Cawley PW; Heidt RS; Scranton PE; Losse GM; Howard ME
    Foot Ankle Int; 2003 Jul; 24(7):551-6. PubMed ID: 12921361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Torques developed by different types of shoes on various playing surfaces.
    Bonstingl RW; Morehouse CA; Niebel BW
    Med Sci Sports; 1975; 7(2):127-31. PubMed ID: 807786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Six different football shoes, one playing surface and the weather; Assessing variation in shoe-surface traction over one season of elite football.
    Thomson A; Whiteley R; Wilson M; Bleakley C
    PLoS One; 2019; 14(4):e0216364. PubMed ID: 31039209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher shoe-surface interaction is associated with doubling of lower extremity injury risk in football codes: a systematic review and meta-analysis.
    Thomson A; Whiteley R; Bleakley C
    Br J Sports Med; 2015 Oct; 49(19):1245-52. PubMed ID: 26036677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of football injuries on third and fourth generation artificial turfs compared with natural turf.
    Williams S; Hume PA; Kara S
    Sports Med; 2011 Nov; 41(11):903-23. PubMed ID: 21985213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shoe-surface interaction and the reduction of injury in rugby union.
    Milburn PD; Barry EB
    Sports Med; 1998 May; 25(5):319-27. PubMed ID: 9629610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injury and biomechanical perspectives on the rugby scrum: a review of the literature.
    Trewartha G; Preatoni E; England ME; Stokes KA
    Br J Sports Med; 2015 Apr; 49(7):425-33. PubMed ID: 24398223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanics of American football cleats on natural grass and infill-type artificial playing surfaces with loads relevant to elite athletes.
    Kent R; Forman JL; Lessley D; Crandall J
    Sports Biomech; 2015 Jun; 14(2):246-57. PubMed ID: 26114885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is there a relationship between ground and climatic conditions and injuries in football?
    Orchard J
    Sports Med; 2002; 32(7):419-32. PubMed ID: 12015804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of shoe design on the prediction of free torque at the shoe-surface interface using pressure insole technology.
    Weaver BT; Fitzsimons K; Braman J; Haut R
    Sports Biomech; 2016 Sep; 15(3):370-84. PubMed ID: 27240101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower-extremity isokinetic strength profiling in professional rugby league and rugby union.
    Brown SR; Brughelli M; Griffiths PC; Cronin JB
    Int J Sports Physiol Perform; 2014 Mar; 9(2):358-61. PubMed ID: 23751772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Science of rugby league football: a review.
    Gabbett TJ
    J Sports Sci; 2005 Sep; 23(9):961-76. PubMed ID: 16195048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.