These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25096015)

  • 1. Electrochemical sensor with substitutional stripping voltammetry for highly sensitive endotoxin assay.
    Takano S; Inoue KY; Takahashi S; Ino K; Shiku H; Matsue T
    Analyst; 2014 Oct; 139(19):5001-6. PubMed ID: 25096015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A screen-printed endotoxin sensor based on amperometry using a novel p-aminophenol conjugated substrate for a Limulus amebocyte lysate protease reaction.
    Inoue KY; Takano S; Takahashi S; Ishida Y; Ino K; Shiku H; Matsue T
    Analyst; 2013 Nov; 138(21):6523-31. PubMed ID: 23978902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly sensitive endotoxin sensor based on redox cycling in a nanocavity.
    Ito K; Inoue KY; Ino K; Matsue T; Shiku H
    Analyst; 2019 Jun; 144(11):3659-3667. PubMed ID: 31074478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an electrochemical Limulus amebocyte lysate assay technique for portable and highly sensitive endotoxin sensor.
    Inoue KY; Takahashi S; Ino K; Shiku H; Matsue T
    Innate Immun; 2012 Apr; 18(2):343-9. PubMed ID: 21844129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly-sensitive electrochemical immunosensing method based on dual amplification systems.
    Yasukawa T; Yoshimoto Y; Goto T; Mizutani F
    Biosens Bioelectron; 2012; 37(1):19-23. PubMed ID: 22608766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Sensitive Electrochemical Endotoxin Sensor Based on Redox Cycling Using an Interdigitated Array Electrode Device.
    Ito K; Inoue KY; Ito-Sasaki T; Ikegawa M; Takano S; Ino K; Shiku H
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quartz crystal microbalance sensor for endotoxin assay by monitoring limulus amebocyte lysate protease reaction.
    Liu T; Zhang W; Zhou L; Guo Z; Tang Y; Miao P
    Anal Chim Acta; 2017 Apr; 961():106-111. PubMed ID: 28224902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Pt layer/Pt disk electrode configuration to evaluate respiration and alkaline phosphatase activities of mouse embryoid bodies.
    Obregon R; Horiguchi Y; Arai T; Abe S; Zhou Y; RyosukeTakahashi ; Hisada A; Ino K; Shiku H; Matsue T
    Talanta; 2012 May; 94():30-5. PubMed ID: 22608410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative endotoxin determination. Automated kinetic Limulus amebocyte lysate microtiter test with measurement of sample-related interferences].
    Ditter B; Becker KP; Urbaschek R; Urbaschek B
    Arzneimittelforschung; 1983; 33(5):681-7. PubMed ID: 6683544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemical amplification immunoassay using bi-electrode signal transduction system.
    Chen ZP; Jiang JH; Zhang XB; Shen GL; Yu RQ
    Talanta; 2007 Mar; 71(5):2029-33. PubMed ID: 19071559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human endothelial cell-based assay for endotoxin as sensitive as the conventional Limulus Amebocyte Lysate assay.
    Unger RE; Peters K; Sartoris A; Freese C; Kirkpatrick CJ
    Biomaterials; 2014 Mar; 35(10):3180-7. PubMed ID: 24456607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical endotoxin sensors based on TLR4/MD-2 complexes immobilized on gold electrodes.
    Yeo TY; Choi JS; Lee BK; Kim BS; Yoon HI; Lee HY; Cho YW
    Biosens Bioelectron; 2011 Oct; 28(1):139-45. PubMed ID: 21816600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles.
    Toh HS; Batchelor-McAuley C; Tschulik K; Uhlemann M; Crossley A; Compton RG
    Nanoscale; 2013 Jun; 5(11):4884-93. PubMed ID: 23624744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-sensitive electrochemical detection of point mutation based on polymerization-induced enzymatic amplification.
    Feng K; Zhao J; Wu ZS; Jiang J; Shen G; Yu R
    Biosens Bioelectron; 2011 Mar; 26(7):3187-91. PubMed ID: 21239161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The renovated silver ring electrode in determination of lead traces by differential pulse anodic stripping voltammetry.
    Baś B; Jakubowska M
    Anal Chim Acta; 2008 May; 615(1):39-46. PubMed ID: 18440361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Sensitivity Amperometric Dual Immunoassay Using Two Cascade Reactions with Signal Amplification of Redox Cycling in Nanoscale Gap.
    Ito K; Y Inoue K; Ino K; Shiku H
    Anal Chem; 2022 Nov; 94(47):16451-16460. PubMed ID: 36331911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfabricated three-electrode on-chip PDMS device with a vibration motor for stripping voltammetric detection of heavy metal ions.
    Zhang W; Zhang H; Williams SE; Zhou A
    Talanta; 2015 Jan; 132():321-6. PubMed ID: 25476314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers.
    Lai G; Wang L; Wu J; Ju H; Yan F
    Anal Chim Acta; 2012 Apr; 721():1-6. PubMed ID: 22405294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Destruction of typical endotoxins by dry heat as determined using LAL assay and pyrogen assay.
    Nakata T
    J Parenter Sci Technol; 1993; 47(5):258-64. PubMed ID: 8263663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbead-based electrochemical immunoassay with interdigitated array electrodes.
    Thomas JH; Kim SK; Hesketh PJ; Halsall HB; Heineman WR
    Anal Biochem; 2004 May; 328(2):113-22. PubMed ID: 15113686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.