These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 25096084)

  • 41. Theoretical and experimental analyses of tunable Fabry-Perot resonators using piezoelectric phononic crystals.
    Ponge MF; Dubus B; Granger C; Vasseur JO; Thi MP; Hladky-Hennion AC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1114-21. PubMed ID: 26067046
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.
    Warmuth F; Körner C
    Materials (Basel); 2015 Dec; 8(12):8327-8337. PubMed ID: 28793713
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The influence of pore shapes on the band structures in phononic crystals with periodic distributed void pores.
    Liu Y; Su JY; Xu YL; Zhang XC
    Ultrasonics; 2009 Feb; 49(2):276-80. PubMed ID: 19010508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hybrid phononic crystals for broad-band frequency noise control by sound blocking and localization.
    Yoo S; Kim YJ; Kim YY
    J Acoust Soc Am; 2012 Nov; 132(5):EL411-6. PubMed ID: 23145703
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Full band gap for surface acoustic waves in a piezoelectric phononic crystal.
    Laude V; Wilm M; Benchabane S; Khelif A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036607. PubMed ID: 15903605
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vibration Isolation and Noise Reduction Method Based on Phononic Crystal.
    Li H; Sun P
    Comput Intell Neurosci; 2022; 2022():9903645. PubMed ID: 36262598
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phononic crystals of spherical particles: a tight binding approach.
    Mattarelli M; Secchi M; Montagna M
    J Chem Phys; 2013 Nov; 139(17):174710. PubMed ID: 24206325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complete phononic band gaps in the 3D Yablonovite structure with spheres.
    Aravantinos-Zafiris N; Lucklum F; Sigalas MM
    Ultrasonics; 2021 Feb; 110():106265. PubMed ID: 33038646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hybrid phononic crystal plates for lowering and widening acoustic band gaps.
    Badreddine Assouar M; Sun JH; Lin FS; Hsu JC
    Ultrasonics; 2014 Dec; 54(8):2159-64. PubMed ID: 24996255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A hybrid phononic crystal for roof application.
    Wan Q; Shao R
    J Acoust Soc Am; 2017 Nov; 142(5):2988. PubMed ID: 29195453
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for complete surface wave band gap in a piezoelectric phononic crystal.
    Benchabane S; Khelif A; Rauch JY; Robert L; Laude V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):065601. PubMed ID: 16906904
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system.
    Hsieh PF; Wu TT; Sun JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):148-58. PubMed ID: 16471441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.
    Alonso-Redondo E; Schmitt M; Urbach Z; Hui CM; Sainidou R; Rembert P; Matyjaszewski K; Bockstaller MR; Fytas G
    Nat Commun; 2015 Sep; 6():8309. PubMed ID: 26390851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the universality of the frequency spectrum and band-gap optimization of quasicrystalline-generated structured rods.
    Morini L; Gökay Tetik Z; Shmuel G; Gei M
    Philos Trans A Math Phys Eng Sci; 2020 Jan; 378(2162):20190240. PubMed ID: 31760899
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3-D phononic crystals with ultra-wide band gaps.
    Lu Y; Yang Y; Guest JK; Srivastava A
    Sci Rep; 2017 Feb; 7():43407. PubMed ID: 28233812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Observation and tuning of hypersonic bandgaps in colloidal crystals.
    Cheng W; Wang J; Jonas U; Fytas G; Stefanou N
    Nat Mater; 2006 Oct; 5(10):830-6. PubMed ID: 16951677
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Omnidirectional elastic band gap in finite lamellar structures.
    Bria D; Djafari-Rouhani B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056609. PubMed ID: 12513625
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Realization of Complex 3D Phononic Crystals with Wide Complete Acoustic Band Gaps.
    Lucklum F; Vellekoop M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):796-767. PubMed ID: 27008667
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica.
    Marunin MV; Polikarpova NV
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499810
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical study and topology optimization of 1D periodic bimaterial phononic crystal plates for bandgaps of low order Lamb waves.
    Hedayatrasa S; Abhary K; Uddin M
    Ultrasonics; 2015 Mar; 57():104-24. PubMed ID: 25468146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.