These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 25096100)

  • 1. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine.
    Abd El-Rahman AI; Abdel-Rahman E
    J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erratum: Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach [J. Acoust. Soc. Am. 141 (6), 4398-4407 (2017)].
    Yasui K; Izu N
    J Acoust Soc Am; 2020 Jan; 147(1):267. PubMed ID: 32006972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoacoustic properties of fibrous materials.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jun; 127(6):3470-84. PubMed ID: 20550247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic fields in binary gas mixtures: mutual diffusion effects throughout and beyond the boundary layers.
    Guianvarc'h C; Bruneau M
    J Acoust Soc Am; 2012 Jun; 131(6):4252-62. PubMed ID: 22712900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid compressibility effects during the collapse of a single cavitating bubble.
    Fuster D; Dopazo C; Hauke G
    J Acoust Soc Am; 2011 Jan; 129(1):122-31. PubMed ID: 21302994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unification and extension of monolithic state space and iterative cochlear models.
    Rapson MJ; Tapson JC; Karpul D
    J Acoust Soc Am; 2012 May; 131(5):3935-52. PubMed ID: 22559368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
    Hireche O; Weisman C; Baltean-Carlès D; Le Quéré P; Bauwens L
    J Acoust Soc Am; 2010 Dec; 128(6):3438-48. PubMed ID: 21218877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical and numerical investigation of the hemodynamical origins of oscillations in microvascular networks.
    Tawfik Y; Owens RG
    Bull Math Biol; 2013 Apr; 75(4):676-707. PubMed ID: 23417628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.
    Ma L; Weisman C; Baltean-Carlès D; Delbende I; Bauwens L
    J Acoust Soc Am; 2015 Aug; 138(2):847-57. PubMed ID: 26328701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An application of the Peano series expansion to predict sound propagation in materials with continuous pore stratification.
    Geslain A; Groby JP; Dazel O; Mahasaranon S; Horoshenkov KV; Khan A
    J Acoust Soc Am; 2012 Jul; 132(1):208-15. PubMed ID: 22779470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On boundary conditions for the diffusion equation in room-acoustic prediction: Theory, simulations, and experiments.
    Jing Y; Xiang N
    J Acoust Soc Am; 2008 Jan; 123(1):145-53. PubMed ID: 18177146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments.
    Jing Y; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of characteristic impedance and wave number of porous material using pulse-tube and transfer-matrix methods.
    Sun L; Hou H; Dong LY; Wan FR
    J Acoust Soc Am; 2009 Dec; 126(6):3049-56. PubMed ID: 20000918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic pulse propagation in an urban environment using a three-dimensional numerical simulation.
    Mehra R; Raghuvanshi N; Chandak A; Albert DG; Wilson DK; Manocha D
    J Acoust Soc Am; 2014 Jun; 135(6):3231-42. PubMed ID: 24907788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of inert gas-condensing vapor thermoacoustics: transport equations.
    Slaton WV; Raspet R; Hickey CJ; Hiller RA
    J Acoust Soc Am; 2002 Oct; 112(4):1423-30. PubMed ID: 12398450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
    Ling H; Luo E; Dai W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comment on "Reconstructing surface wave profiles from reflected acoustic pulses" [J. Acoust. Soc. Am. 133(5), 2597-2611 (2013)].
    Choo Y; Song HC
    J Acoust Soc Am; 2016 May; 139(5):2399. PubMed ID: 27250135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation.
    Guan W; Hu H; He X
    J Acoust Soc Am; 2009 Apr; 125(4):1942-50. PubMed ID: 19354370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional sound source modeling using the adjoint Euler equations in a finite-difference time-domain approach.
    Stein L; Straube F; Weinzierl S; Lemke M
    J Acoust Soc Am; 2020 Nov; 148(5):3075. PubMed ID: 33261372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.