BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25096520)

  • 1. Arginine protects muscle cells from wasting in vitro in an mTORC1-dependent and NO-independent manner.
    Ham DJ; Caldow MK; Lynch GS; Koopman R
    Amino Acids; 2014 Dec; 46(12):2643-52. PubMed ID: 25096520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide.
    Bauchart-Thevret C; Cui L; Wu G; Burrin DG
    Am J Physiol Endocrinol Metab; 2010 Dec; 299(6):E899-909. PubMed ID: 20841502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle.
    White JP; Gao S; Puppa MJ; Sato S; Welle SL; Carson JA
    Mol Cell Endocrinol; 2013 Jan; 365(2):174-86. PubMed ID: 23116773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leucine as a treatment for muscle wasting: a critical review.
    Ham DJ; Caldow MK; Lynch GS; Koopman R
    Clin Nutr; 2014 Dec; 33(6):937-45. PubMed ID: 25444557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.
    Gao S; Carson JA
    Am J Physiol Cell Physiol; 2016 Jan; 310(1):C66-79. PubMed ID: 26491045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy modulates amino acid signaling network in myotubes: differential effects on mTORC1 pathway and the integrated stress response.
    Yu X; Long YC
    FASEB J; 2015 Feb; 29(2):394-407. PubMed ID: 25376834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli.
    Goodman CA
    Rev Physiol Biochem Pharmacol; 2014; 166():43-95. PubMed ID: 24442322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells.
    Mejía-García TA; Portugal CC; Encarnação TG; Prado MA; Paes-de-Carvalho R
    Cell Signal; 2013 Dec; 25(12):2424-39. PubMed ID: 23958999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-Citrulline Protects Skeletal Muscle Cells from Cachectic Stimuli through an iNOS-Dependent Mechanism.
    Ham DJ; Gleeson BG; Chee A; Baum DM; Caldow MK; Lynch GS; Koopman R
    PLoS One; 2015; 10(10):e0141572. PubMed ID: 26513461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramide inhibits insulin-stimulated Akt phosphorylation through activation of Rheb/mTORC1/S6K signaling in skeletal muscle.
    Hsieh CT; Chuang JH; Yang WC; Yin Y; Lin Y
    Cell Signal; 2014 Jul; 26(7):1400-8. PubMed ID: 24650522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells.
    Kong X; Tan B; Yin Y; Gao H; Li X; Jaeger LA; Bazer FW; Wu G
    J Nutr Biochem; 2012 Sep; 23(9):1178-83. PubMed ID: 22137265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK.
    White JP; Puppa MJ; Gao S; Sato S; Welle SL; Carson JA
    Am J Physiol Endocrinol Metab; 2013 May; 304(10):E1042-52. PubMed ID: 23531613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes.
    Salles J; Chanet A; Giraudet C; Patrac V; Pierre P; Jourdan M; Luiking YC; Verlaan S; Migné C; Boirie Y; Walrand S
    Mol Nutr Food Res; 2013 Dec; 57(12):2137-46. PubMed ID: 23929734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine Protects Muscle Cells From Wasting
    Caldow MK; Ham DJ; Trieu J; Chung JD; Lynch GS; Koopman R
    Front Nutr; 2019; 6():172. PubMed ID: 31803749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-carbohydrate ingestion alters Vps34 cellular localization independent of changes in kinase activity in human skeletal muscle.
    Hodson N; Dent JR; Song Z; O'Leary MF; Nicholson T; Jones SW; Murray JT; Jeromson S; Hamilton DL; Breen L; Philp A
    Exp Physiol; 2020 Dec; 105(12):2178-2189. PubMed ID: 32965751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid sensing and activation of mechanistic target of rapamycin complex 1: implications for skeletal muscle.
    Ham DJ; Lynch GS; Koopman R
    Curr Opin Clin Nutr Metab Care; 2016 Jan; 19(1):67-73. PubMed ID: 26560525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opening of Intermediate Conductance Ca
    Iseki Y; Ono Y; Hibi C; Tanaka S; Takeshita S; Maejima Y; Kurokawa J; Murakawa M; Shimomura K; Sakamoto K
    J Pharmacol Exp Ther; 2021 Mar; 376(3):454-462. PubMed ID: 33376149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leucine induces myofibrillar protein accretion in cultured skeletal muscle through mTOR dependent and -independent control of myosin heavy chain mRNA levels.
    Haegens A; Schols AM; van Essen AL; van Loon LJ; Langen RC
    Mol Nutr Food Res; 2012 May; 56(5):741-52. PubMed ID: 22648621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance.
    Bond P
    J Int Soc Sports Nutr; 2016; 13():8. PubMed ID: 26937223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro.
    Martin NRW; Turner MC; Farrington R; Player DJ; Lewis MP
    J Cell Physiol; 2017 Oct; 232(10):2788-2797. PubMed ID: 28409828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.