These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25096539)
1. Sensory rewiring in an echolocator: genome-wide modification of retinogenic and auditory genes in the bat Myotis davidii. Hudson NJ; Baker ML; Hart NS; Wynne JW; Gu Q; Huang Z; Zhang G; Ingham AB; Wang L; Reverter A G3 (Bethesda); 2014 Aug; 4(10):1825-35. PubMed ID: 25096539 [TBL] [Abstract][Full Text] [Related]
2. Independent losses of visual perception genes Gja10 and Rbp3 in echolocating bats (Order: Chiroptera). Shen B; Fang T; Dai M; Jones G; Zhang S PLoS One; 2013; 8(7):e68867. PubMed ID: 23874796 [TBL] [Abstract][Full Text] [Related]
3. The Genomes of Two Bat Species with Long Constant Frequency Echolocation Calls. Dong D; Lei M; Hua P; Pan YH; Mu S; Zheng G; Pang E; Lin K; Zhang S Mol Biol Evol; 2017 Jan; 34(1):20-34. PubMed ID: 27803123 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Zhang G; Cowled C; Shi Z; Huang Z; Bishop-Lilly KA; Fang X; Wynne JW; Xiong Z; Baker ML; Zhao W; Tachedjian M; Zhu Y; Zhou P; Jiang X; Ng J; Yang L; Wu L; Xiao J; Feng Y; Chen Y; Sun X; Zhang Y; Marsh GA; Crameri G; Broder CC; Frey KG; Wang LF; Wang J Science; 2013 Jan; 339(6118):456-60. PubMed ID: 23258410 [TBL] [Abstract][Full Text] [Related]
5. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Gutierrez EA; Castiglione GM; Morrow JM; Schott RK; Loureiro LO; Lim BK; Chang BSW Mol Biol Evol; 2018 Oct; 35(10):2422-2434. PubMed ID: 30010964 [TBL] [Abstract][Full Text] [Related]
6. Myotis rufoniger genome sequence and analyses: M. rufoniger's genomic feature and the decreasing effective population size of Myotis bats. Bhak Y; Jeon Y; Jeon S; Chung O; Jho S; Jun J; Kim HM; Cho Y; Yoon C; Lee S; Kang JH; Lim JD; An J; Cho YS; Ryu DY; Bhak J PLoS One; 2017; 12(7):e0180418. PubMed ID: 28678835 [TBL] [Abstract][Full Text] [Related]
7. Genomic and functional evidence reveals molecular insights into the origin of echolocation in whales. Liu Z; Qi FY; Xu DM; Zhou X; Shi P Sci Adv; 2018 Oct; 4(10):eaat8821. PubMed ID: 30306134 [TBL] [Abstract][Full Text] [Related]
8. [Genome-wide scan reveals the molecular mechanisms of functional differentiation of Myotis lucifugus and Pteropus vampyrus]. Zeng YN; Shen YY; Zhang YP Dongwuxue Yanjiu; 2013 Jun; 34(3):221-7. PubMed ID: 23775999 [TBL] [Abstract][Full Text] [Related]
9. The complete mitochondrial genome of David's myotis, Myotis davidii (Myotis, Vespertilionidae). Wang SQ; Li YJ; Yin AG; Zhang W; Jiang JJ; Wang WL; Hu M Mitochondrial DNA A DNA Mapp Seq Anal; 2016 May; 27(3):1587-8. PubMed ID: 25208182 [TBL] [Abstract][Full Text] [Related]
10. No genome-wide protein sequence convergence for echolocation. Zou Z; Zhang J Mol Biol Evol; 2015 May; 32(5):1237-41. PubMed ID: 25631925 [TBL] [Abstract][Full Text] [Related]
11. The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats. Liu Y; Han N; Franchini LF; Xu H; Pisciottano F; Elgoyhen AB; Rajan KE; Zhang S Mol Biol Evol; 2012 May; 29(5):1441-50. PubMed ID: 22319145 [TBL] [Abstract][Full Text] [Related]
12. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals. Davies KT; Tsagkogeorga G; Rossiter SJ BMC Evol Biol; 2014 Dec; 14():261. PubMed ID: 25523630 [TBL] [Abstract][Full Text] [Related]
13. As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats. Simões BF; Foley NM; Hughes GM; Zhao H; Zhang S; Rossiter SJ; Teeling EC Mol Biol Evol; 2019 Jan; 36(1):54-68. PubMed ID: 30476197 [TBL] [Abstract][Full Text] [Related]
14. Molecular evolution of bat color vision genes. Wang D; Oakley T; Mower J; Shimmin LC; Yim S; Honeycutt RL; Tsao H; Li WH Mol Biol Evol; 2004 Feb; 21(2):295-302. PubMed ID: 14660703 [TBL] [Abstract][Full Text] [Related]
15. Six reference-quality genomes reveal evolution of bat adaptations. Jebb D; Huang Z; Pippel M; Hughes GM; Lavrichenko K; Devanna P; Winkler S; Jermiin LS; Skirmuntt EC; Katzourakis A; Burkitt-Gray L; Ray DA; Sullivan KAM; Roscito JG; Kirilenko BM; Dávalos LM; Corthals AP; Power ML; Jones G; Ransome RD; Dechmann DKN; Locatelli AG; Puechmaille SJ; Fedrigo O; Jarvis ED; Hiller M; Vernes SC; Myers EW; Teeling EC Nature; 2020 Jul; 583(7817):578-584. PubMed ID: 32699395 [TBL] [Abstract][Full Text] [Related]
16. Molecular adaptations underlying high-frequency hearing in the brain of CF bats species. Li X; Wang H; Wang X; Bao M; Sun R; Dai W; Sun K; Feng J BMC Genomics; 2024 Mar; 25(1):279. PubMed ID: 38493092 [TBL] [Abstract][Full Text] [Related]
17. The role of ecological factors in shaping bat cone opsin evolution. Gutierrez EA; Schott RK; Preston MW; Loureiro LO; Lim BK; Chang BSW Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29618549 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary Basis of High-Frequency Hearing in the Cochleae of Echolocators Revealed by Comparative Genomics. Wang H; Zhao H; Sun K; Huang X; Jin L; Feng J Genome Biol Evol; 2020 Jan; 12(1):3740-3753. PubMed ID: 31730196 [TBL] [Abstract][Full Text] [Related]
19. Gene structure and evolution of transthyretin in the order Chiroptera. Khwanmunee J; Leelawatwattana L; Prapunpoj P Genetica; 2016 Feb; 144(1):71-83. PubMed ID: 26681450 [TBL] [Abstract][Full Text] [Related]