These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 25096830)
1. Revealing the nature of the active site on the carbon catalyst for C-H bond activation. Sun X; Li B; Su D Chem Commun (Camb); 2014 Sep; 50(75):11016-9. PubMed ID: 25096830 [TBL] [Abstract][Full Text] [Related]
2. The Unexpected Reactivity of the Carbon Sites on the Nanostructured Carbon Catalysts towards the C-H Bond Activation from the Analysis of the Aromaticity. Sun X; Li B; Su D Chem Asian J; 2016 Jun; 11(11):1668-71. PubMed ID: 27062419 [TBL] [Abstract][Full Text] [Related]
3. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account. Sun X; Han P; Li B; Mao S; Liu T; Ali S; Lian Z; Su D Chem Commun (Camb); 2018 Jan; 54(8):864-875. PubMed ID: 29322143 [TBL] [Abstract][Full Text] [Related]
4. Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface. Fu H; Liu ZP; Li ZH; Wang WN; Fan KN J Am Chem Soc; 2006 Aug; 128(34):11114-23. PubMed ID: 16925429 [TBL] [Abstract][Full Text] [Related]
5. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
6. C-H bond activation. Regioselective ketone α-alkylation with simple olefins via dual activation. Mo F; Dong G Science; 2014 Jul; 345(6192):68-72. PubMed ID: 24994648 [TBL] [Abstract][Full Text] [Related]
7. In situ UV-visible spectroscopic measurements of kinetic parameters and active sites for catalytic oxidation of alkanes on vanadium oxides. Argyle MD; Chen K; Iglesia E; Bell AT J Phys Chem B; 2005 Feb; 109(6):2414-20. PubMed ID: 16851236 [TBL] [Abstract][Full Text] [Related]
8. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. Park YJ; Park JW; Jun CH Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521 [TBL] [Abstract][Full Text] [Related]
9. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. Sharma PK; De Visser SP; Ogliaro F; Shaik S J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559 [TBL] [Abstract][Full Text] [Related]
10. C-C bond formation via C-H bond activation using an in situ-generated ruthenium catalyst. Martinez R; Simon MO; Chevalier R; Pautigny C; Genet JP; Darses S J Am Chem Soc; 2009 Jun; 131(22):7887-95. PubMed ID: 19449877 [TBL] [Abstract][Full Text] [Related]
11. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related]
12. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. Yang ML; Zhu YA; Fan C; Sui ZJ; Chen D; Zhou XG Phys Chem Chem Phys; 2011 Feb; 13(8):3257-67. PubMed ID: 21253636 [TBL] [Abstract][Full Text] [Related]
13. Hydride ligands make the difference: density functional study of the mechanism of the Murai reaction catalyzed by [Ru(H)2(H2)2(PR3)2] (R=cyclohexyl). Helmstedt U; Clot E Chemistry; 2012 Sep; 18(36):11449-58. PubMed ID: 22847874 [TBL] [Abstract][Full Text] [Related]
14. Reactivity of surface alkoxy species on acidic zeolite catalysts. Wang W; Hunger M Acc Chem Res; 2008 Aug; 41(8):895-904. PubMed ID: 18605741 [TBL] [Abstract][Full Text] [Related]
15. Theoretical study of reaction pathways for the rhodium phosphine-catalysed borylation of C-H bonds with pinacolborane. Lam WH; Lam KC; Lin Z; Shimada S; Perutz RN; Marder TB Dalton Trans; 2004 May; (10):1556-62. PubMed ID: 15252604 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic insights into the rhodium-catalyzed intramolecular ketone hydroacylation. Shen Z; Dornan PK; Khan HA; Woo TK; Dong VM J Am Chem Soc; 2009 Jan; 131(3):1077-91. PubMed ID: 19128061 [TBL] [Abstract][Full Text] [Related]
17. Rate-limiting step of the Rh-catalyzed carboacylation of alkenes: C-C bond activation or migratory insertion? Lutz JP; Rathbun CM; Stevenson SM; Powell BM; Boman TS; Baxter CE; Zona JM; Johnson JB J Am Chem Soc; 2012 Jan; 134(1):715-22. PubMed ID: 22133417 [TBL] [Abstract][Full Text] [Related]
18. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core-shell sp2/sp3 nanocomposite structure. Wang R; Sun X; Zhang B; Sun X; Su D Chemistry; 2014 May; 20(21):6324-31. PubMed ID: 24740731 [TBL] [Abstract][Full Text] [Related]
19. Stereoretentive C-H bond activation in the aqueous phase catalytic hydrogenation of amino acids to amino alcohols. Jere FT; Miller DJ; Jackson JE Org Lett; 2003 Feb; 5(4):527-30. PubMed ID: 12583760 [TBL] [Abstract][Full Text] [Related]
20. Rationale of the effects from dopants on C-H bond activation for sp(2) hybridized nanostructured carbon catalysts. Mao S; Sun X; Li B; Su DS Nanoscale; 2015 Oct; 7(40):16597-600. PubMed ID: 26399302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]