These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25096949)
1. A three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. Fatone S; Johnson WB; Tucker K Prosthet Orthot Int; 2016 Apr; 40(2):240-6. PubMed ID: 25096949 [TBL] [Abstract][Full Text] [Related]
2. Using a three-dimensional model of the Ankle-Foot Orthosis/leg to explore the effects of combinations of axis misalignments. Fatone S; Johnson WB; Kwak S Prosthet Orthot Int; 2016 Apr; 40(2):247-52. PubMed ID: 25389348 [TBL] [Abstract][Full Text] [Related]
3. A model to predict the effect of ankle joint misalignment on calf band movement in ankle-foot orthoses. Fatone S; Hansen AH Prosthet Orthot Int; 2007 Mar; 31(1):76-87. PubMed ID: 17365887 [TBL] [Abstract][Full Text] [Related]
4. In-silico simulations to study the effects of ankle-joint misalignments in Ankle-Foot-Orthoses during level walking. Badari VK; Bapat GM Med Eng Phys; 2024 Mar; 125():104134. PubMed ID: 38508795 [TBL] [Abstract][Full Text] [Related]
5. Gait evaluation of the advanced reciprocating gait orthosis with solid versus dorsi flexion assist ankle foot orthoses in paraplegic patients. Bani MA; Arazpour M; Ghomshe FT; Mousavi ME; Hutchins SW Prosthet Orthot Int; 2013 Apr; 37(2):161-7. PubMed ID: 22988045 [TBL] [Abstract][Full Text] [Related]
6. The immediate effects of fitting and tuning solid ankle-foot orthoses in early stroke rehabilitation. Carse B; Bowers R; Meadows BC; Rowe P Prosthet Orthot Int; 2015 Dec; 39(6):454-62. PubMed ID: 24938770 [TBL] [Abstract][Full Text] [Related]
7. Immediate-term effects of use of an ankle-foot orthosis with an oil damper on the gait of stroke patients when walking without the device. Yamamoto S; Ibayashi S; Fuchi M; Yasui T Prosthet Orthot Int; 2015 Apr; 39(2):140-9. PubMed ID: 24469429 [TBL] [Abstract][Full Text] [Related]
8. A comparison of orthoses in the treatment of idiopathic toe walking: A randomized controlled trial. Herrin K; Geil M Prosthet Orthot Int; 2016 Apr; 40(2):262-9. PubMed ID: 25628380 [TBL] [Abstract][Full Text] [Related]
9. Effects of plantar flexion resistive moment generated by an ankle-foot orthosis with an oil damper on the gait of stroke patients: a pilot study. Yamamoto S; Tomokiyo N; Yasui T; Kawaguchi T Prosthet Orthot Int; 2013 Jun; 37(3):212-21. PubMed ID: 23075466 [TBL] [Abstract][Full Text] [Related]
10. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis. Yakimovich T; Lemaire ED; Kofman J Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186 [TBL] [Abstract][Full Text] [Related]
11. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription. Arch ES; Stanhope SJ; Higginson JS Prosthet Orthot Int; 2016 Oct; 40(5):606-16. PubMed ID: 26209424 [TBL] [Abstract][Full Text] [Related]
12. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study. Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383 [TBL] [Abstract][Full Text] [Related]
13. Effect of an ankle-foot orthosis on knee joint mechanics: a novel conservative treatment for knee osteoarthritis. Fantini Pagani CH; Willwacher S; Benker R; Brüggemann GP Prosthet Orthot Int; 2014 Dec; 38(6):481-91. PubMed ID: 24327668 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the effect of foot orthoses on Star Excursion Balance Test performance in patients with chronic ankle instability. Abbasi F; Bahramizadeh M; Hadadi M Prosthet Orthot Int; 2019 Feb; 43(1):6-11. PubMed ID: 30101681 [TBL] [Abstract][Full Text] [Related]
15. The effect of tuning ankle foot orthoses-footwear combination on the gait parameters of children with cerebral palsy. Eddison N; Chockalingam N Prosthet Orthot Int; 2013 Apr; 37(2):95-107. PubMed ID: 22833518 [TBL] [Abstract][Full Text] [Related]
16. Design of a quasi-passive 3 DOFs ankle-foot wearable rehabilitation orthosis. Zhang C; Zhu Y; Fan J; Zhao J; Yu H Biomed Mater Eng; 2015; 26 Suppl 1():S647-54. PubMed ID: 26406060 [TBL] [Abstract][Full Text] [Related]
17. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters. Schmalz T; Pröbsting E; Auberger R; Siewert G Prosthet Orthot Int; 2016 Apr; 40(2):277-86. PubMed ID: 25249381 [TBL] [Abstract][Full Text] [Related]
18. Comparison of ankle-foot orthoses with plantar flexion stop and plantar flexion resistance in the gait of stroke patients: A randomized controlled trial. Yamamoto S; Tanaka S; Motojima N Prosthet Orthot Int; 2018 Oct; 42(5):544-553. PubMed ID: 29865941 [TBL] [Abstract][Full Text] [Related]
19. A comparison of mechanical properties between different percentage layups of a single-style carbon fibre ankle foot orthosis. Sheehan C; Figgins E Prosthet Orthot Int; 2017 Aug; 41(4):364-372. PubMed ID: 27365333 [TBL] [Abstract][Full Text] [Related]
20. Multi-segment foot mobility in a hinged ankle-foot orthosis: the effect of rotation axis position. Leardini A; Aquila A; Caravaggi P; Ferraresi C; Giannini S Gait Posture; 2014; 40(1):274-7. PubMed ID: 24792637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]