BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 25097075)

  • 1. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean.
    Li C; Zhang H; Wang X; Liao H
    Plant Cell Rep; 2014 Nov; 33(11):1921-32. PubMed ID: 25097075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation.
    Fan YL; Zhang XH; Zhong LJ; Wang XY; Jin LS; Lyu SH
    BMC Plant Biol; 2020 May; 20(1):208. PubMed ID: 32397958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Efficient
    Huang P; Lu M; Li X; Sun H; Cheng Z; Miao Y; Fu Y; Zhang X
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots.
    Chen L; Jiang B; Wu C; Sun S; Hou W; Han T
    BMC Plant Biol; 2014 Sep; 14():245. PubMed ID: 25224536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high efficient protocol for soybean root transformation by Agrobacterium rhizogenes and most stable reference genes for RT-qPCR analysis.
    Kuma KM; Lopes-Caitar VS; Romero CC; Silva SM; Kuwahara MK; Carvalho MC; Abdelnoor RV; Dias WP; Marcelino-Guimarães FC
    Plant Cell Rep; 2015 Nov; 34(11):1987-2000. PubMed ID: 26232349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics.
    Kim HJ
    Methods Mol Biol; 2013; 958():179-87. PubMed ID: 23143493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots.
    Subramanian S; Hu X; Lu G; Odelland JT; Yu O
    Plant Mol Biol; 2004 Mar; 54(5):623-39. PubMed ID: 15356384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants.
    Nontachaiyapoom S; Scott PT; Men AE; Kinkema M; Schenk PM; Gresshoff PM
    Mol Plant Microbe Interact; 2007 Jul; 20(7):769-80. PubMed ID: 17601165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soybean Hairy Root Transformation: A Rapid and Highly Efficient Method.
    Song J; Tóth K; Montes-Luz B; Stacey G
    Curr Protoc; 2021 Jul; 1(7):e195. PubMed ID: 34288607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Efficient and Reproducible Method for Producing Composite Plants by Agrobacterium rhizogenes-based Hairy Root Transformation.
    Teng C; Lyu K; Li Q; Li N; Lyu S; Fan Y
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37458476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1, under phosphorus deficiency.
    Wang L; Wang W; Miao Y; Peters M; Schultze-Kraft R; Liu G; Chen Z
    Plant Cell Rep; 2023 Mar; 42(3):575-585. PubMed ID: 36624204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens -transformed roots and Agrobacterium rhizogenes-transformed hairy roots.
    Crane C; Wright E; Dixon RA; Wang ZY
    Planta; 2006 May; 223(6):1344-54. PubMed ID: 16575594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tinkering
    Jameel A; Noman M; Liu W; Ahmad N; Wang F; Li X; Li H
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32085397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum.
    Chen SC; Liu HW; Lee KT; Yamakawa T
    Plant Cell Rep; 2007 Jan; 26(1):29-37. PubMed ID: 16874528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean.
    Li C; Li C; Zhang H; Liao H; Wang X
    Physiol Plant; 2017 Feb; 159(2):215-227. PubMed ID: 27762446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of nematode-responsive promoters in sugar beet hairy roots.
    Van Poucke K; Karimi M; Gheysen G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2b):591-8. PubMed ID: 12425082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of expression characteristics of soybean leaf and root tissue-specific promoters in Arabidopsis and soybean.
    Xun H; Zhang X; Yu J; Pang J; Wang S; Liu B; Dong Y; Jiang L; Guo D
    Transgenic Res; 2021 Dec; 30(6):799-810. PubMed ID: 34115286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of constitutive viral promoters in transgenic soybean roots and nodules.
    Govindarajulu M; Elmore JM; Fester T; Taylor CG
    Mol Plant Microbe Interact; 2008 Aug; 21(8):1027-35. PubMed ID: 18616399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Hairy root induced by wild-type agrobacterium rhizogenes K599 in soybean, cucumber and garden balsam in vivo].
    Xiang TH; Wang LL; Pang JL; Chen M; Xu C
    Yi Chuan; 2005 Sep; 27(5):783-6. PubMed ID: 16257909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative expression of beta-glucuronidase with five different promoters in transgenic carrot (Daucus carota L.) root and leaf tissues.
    Wally O; Jayaraj J; Punja ZK
    Plant Cell Rep; 2008 Feb; 27(2):279-87. PubMed ID: 17924115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.