BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25097178)

  • 1. Hemolysis is a primary ATP-release mechanism in human erythrocytes.
    Sikora J; Orlov SN; Furuya K; Grygorczyk R
    Blood; 2014 Sep; 124(13):2150-7. PubMed ID: 25097178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cell ATP release correlates with red blood cell hemolysis.
    Ferguson BS; Neidert LE; Rogatzki MJ; Lohse KR; Gladden LB; Kluess HA
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C761-C769. PubMed ID: 34495762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible roles for ATP release from RBCs exclude the cAMP-mediated Panx1 pathway.
    Keller AS; Diederich L; Panknin C; DeLalio LJ; Drake JC; Sherman R; Jackson EK; Yan Z; Kelm M; Cortese-Krott MM; Isakson BE
    Am J Physiol Cell Physiol; 2017 Dec; 313(6):C593-C603. PubMed ID: 28855161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of hemolysis in red cell adenosine triphosphate release in simulated exercise conditions in vitro.
    Mairbäurl H; Ruppe FA; Bärtsch P
    Med Sci Sports Exerc; 2013 Oct; 45(10):1941-7. PubMed ID: 23575515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced deformability contributes to impaired deoxygenation-induced ATP release from red blood cells of older adult humans.
    Racine ML; Dinenno FA
    J Physiol; 2019 Sep; 597(17):4503-4519. PubMed ID: 31310005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis.
    Leal Denis MF; Lefevre SD; Alvarez CL; Lauri N; Enrique N; Rinaldi DE; Gonzalez-Lebrero R; Vecchio LE; Espelt MV; Stringa P; Muñoz-Garay C; Milesi V; Ostuni MA; Herlax V; Schwarzbaum PJ
    Biochim Biophys Acta Mol Cell Res; 2019 May; 1866(5):896-915. PubMed ID: 30726708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes.
    Faris A; Spence DM
    Analyst; 2008 May; 133(5):678-82. PubMed ID: 18427692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea.
    Lockwood SY; Erkal JL; Spence DM
    Nitric Oxide; 2014 Apr; 38():1-7. PubMed ID: 24530476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine triphosphate release by osmotic shock and hemoglobin A1C in diabetic subjects' erythrocytes.
    Petruzzi E; Orlando C; Pinzani P; Sestini R; Del Rosso A; Dini G; Tanganelli E; Buggiani A; Pazzagli M
    Metabolism; 1994 Apr; 43(4):435-40. PubMed ID: 8159099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion.
    Kalsi KK; González-Alonso J
    Exp Physiol; 2012 Mar; 97(3):419-32. PubMed ID: 22227202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP Release by Red Blood Cells under Flow: Model and Simulations.
    Zhang H; Shen Z; Hogan B; Barakat AI; Misbah C
    Biophys J; 2018 Dec; 115(11):2218-2229. PubMed ID: 30447988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deoxygenation Affects Composition of Membrane-Bound Proteins in Human Erythrocytes.
    Luneva OG; Sidorenko SV; Ponomarchuk OO; Tverskoy AM; Cherkashin AA; Rodnenkov OV; Alekseeva NV; Deev LI; Maksimov GV; Grygorczyk R; Orlov SN
    Cell Physiol Biochem; 2016; 39(1):81-8. PubMed ID: 27322642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension.
    Sprague RS; Stephenson AH; Ellsworth ML; Keller C; Lonigro AJ
    Exp Biol Med (Maywood); 2001 May; 226(5):434-9. PubMed ID: 11393171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation.
    Cao Z; Bell JB; Mohanty JG; Nagababu E; Rifkind JM
    Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1494-503. PubMed ID: 19700624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Hypoxia on Erythrocyte Membrane Properties-Implications for Intravascular Hemolysis and Purinergic Control of Blood Flow.
    Grygorczyk R; Orlov SN
    Front Physiol; 2017; 8():1110. PubMed ID: 29312010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafiltrable adenosine triphosphate and 2,3-diphosphoglycerate concentrations in cold-stored human erythrocytes.
    Marshall WE; Rassaian N; Greenwald LS; Omachi A
    Transfusion; 1977; 17(5):448-53. PubMed ID: 910261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular ATP activates a P2 receptor in necturus erythrocytes during hypotonic swelling.
    Light DB; Dahlstrom PK; Gronau RT; Baumann NL
    J Membr Biol; 2001 Aug; 182(3):193-202. PubMed ID: 11547342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose depletion enhances sensitivity to shear stress-induced mechanical damage in red blood cells by rotary blood pumps.
    Sakota D; Sakamoto R; Yokoyama N; Kobayashi M; Takatani S
    Artif Organs; 2009 Sep; 33(9):733-9. PubMed ID: 19775265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo.
    Sprung R; Sprague R; Spence D
    Anal Chem; 2002 May; 74(10):2274-8. PubMed ID: 12038751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids.
    Jiang H; Zhu AG; Mamczur M; Falck JR; Lerea KM; McGiff JC
    Br J Pharmacol; 2007 Aug; 151(7):1033-40. PubMed ID: 17558440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.