BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25097248)

  • 1. Resting state functional connectivity in the human spinal cord.
    Barry RL; Smith SA; Dula AN; Gore JC
    Elife; 2014 Aug; 3():e02812. PubMed ID: 25097248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility of resting state spinal cord networks in healthy volunteers at 7 Tesla.
    Barry RL; Rogers BP; Conrad BN; Smith SA; Gore JC
    Neuroimage; 2016 Jun; 133():31-40. PubMed ID: 26924285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of resting-state functional connectivity in the human spinal cord: Assessing the impact of distinct noise sources.
    Kaptan M; Horn U; Vannesjo SJ; Mildner T; Weiskopf N; Finsterbusch J; Brooks JCW; Eippert F
    Neuroimage; 2023 Jul; 275():120152. PubMed ID: 37142169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic Resting-State Functional Connectivity in the Human Spinal Cord at 3.0 T.
    San Emeterio Nateras O; Yu F; Muir ER; Bazan C; Franklin CG; Li W; Li J; Lancaster JL; Duong TQ
    Radiology; 2016 Apr; 279(1):262-8. PubMed ID: 26505923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A practical protocol for measurements of spinal cord functional connectivity.
    Barry RL; Conrad BN; Smith SA; Gore JC
    Sci Rep; 2018 Nov; 8(1):16512. PubMed ID: 30410122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resting state networks in human cervical spinal cord observed with fMRI.
    Wei P; Li J; Gao F; Ye D; Zhong Q; Liu S
    Eur J Appl Physiol; 2010 Jan; 108(2):265-71. PubMed ID: 19777254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating resting-state functional connectivity in the cervical spinal cord at 3T.
    Eippert F; Kong Y; Winkler AM; Andersson JL; Finsterbusch J; Büchel C; Brooks JCW; Tracey I
    Neuroimage; 2017 Feb; 147():589-601. PubMed ID: 28027960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise.
    Harita S; Stroman PW
    Magn Reson Med; 2017 Dec; 78(6):2149-2156. PubMed ID: 28074492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Resting-State BOLD Networks in the Human Brainstem and Spinal Cord.
    Harita S; Ioachim G; Powers J; Stroman PW
    Neuroscience; 2019 Apr; 404():71-81. PubMed ID: 30776404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsically organized resting state networks in the human spinal cord.
    Kong Y; Eippert F; Beckmann CF; Andersson J; Finsterbusch J; Büchel C; Tracey I; Brooks JC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18067-72. PubMed ID: 25472845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic BOLD signals are detectable in white matter of the spinal cord at rest and after a stimulus.
    Sengupta A; Mishra A; Wang F; Chen LM; Gore JC
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2316117121. PubMed ID: 38776372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T.
    Habas C
    Neuroradiology; 2010 Jan; 52(1):47-59. PubMed ID: 19629462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injury alters intrinsic functional connectivity within the primate spinal cord.
    Chen LM; Mishra A; Yang PF; Wang F; Gore JC
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5991-6. PubMed ID: 25902510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing Coordinated Networks Across the Brainstem and Spinal Cord in the Resting State and Altered Cognitive State.
    Ioachim G; Powers JM; Stroman PW
    Brain Connect; 2019 Jun; 9(5):415-424. PubMed ID: 30909725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of resting-state functional connectivity in the lumbar spinal cord with 3T MRI.
    Combes A; Narisetti L; Sengupta A; Rogers BP; Sweeney G; Prock L; Houston D; McKnight CD; Gore JC; Smith SA; O'Grady KP
    Sci Rep; 2023 Oct; 13(1):18189. PubMed ID: 37875563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resting-state functional connectivity in the rat cervical spinal cord at 9.4 T.
    Wu TL; Wang F; Mishra A; Wilson GH; Byun N; Chen LM; Gore JC
    Magn Reson Med; 2018 May; 79(5):2773-2783. PubMed ID: 28905408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Stimulation Alters Cervical Spinal Cord Functional Connectivity in Humans.
    Weber KA; Sentis AI; Bernadel-Huey ON; Chen Y; Wang X; Parrish TB; Mackey S
    Neuroscience; 2018 Jan; 369():40-50. PubMed ID: 29101078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal fMRI demonstrates segmental organisation of functionally connected networks in the cervical spinal cord: A test-retest reliability study.
    Kowalczyk OS; Medina S; Tsivaka D; McMahon SB; Williams SCR; Brooks JCW; Lythgoe DJ; Howard MA
    Hum Brain Mapp; 2024 Feb; 45(2):e26600. PubMed ID: 38339896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Functional Connectivity of Resting-State Spinal Cord fMRI Reveals Fine-Grained Intrinsic Architecture.
    Kinany N; Pirondini E; Micera S; Van De Ville D
    Neuron; 2020 Nov; 108(3):424-435.e4. PubMed ID: 32910894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Striatal functional connectivity networks are modulated by fMRI resting state conditions.
    Gopinath K; Ringe W; Goyal A; Carter K; Dinse HR; Haley R; Briggs R
    Neuroimage; 2011 Jan; 54(1):380-8. PubMed ID: 20637878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.