BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 25097722)

  • 1. Vitamin E in sarcopenia: current evidences on its role in prevention and treatment.
    Khor SC; Abdul Karim N; Ngah WZ; Yusof YA; Makpol S
    Oxid Med Cell Longev; 2014; 2014():914853. PubMed ID: 25097722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential roles of vitamin E in age-related changes in skeletal muscle health.
    Chung E; Mo H; Wang S; Zu Y; Elfakhani M; Rios SR; Chyu MC; Yang RS; Shen CL
    Nutr Res; 2018 Jan; 49():23-36. PubMed ID: 29420990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia?
    Damiano S; Muscariello E; La Rosa G; Di Maro M; Mondola P; Santillo M
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Systems, Antioxidants and Sarcopenia.
    Fougere B; van Kan GA; Vellas B; Cesari M
    Curr Protein Pept Sci; 2018; 19(7):643-648. PubMed ID: 28317484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for beneficial effects of vitamin E.
    Niki E
    Korean J Intern Med; 2015 Sep; 30(5):571-9. PubMed ID: 26354050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective role of vitamin E on the oxidative stress in Hansen's disease (Leprosy) patients.
    Vijayaraghavan R; Suribabu CS; Sekar B; Oommen PK; Kavithalakshmi SN; Madhusudhanan N; Panneerselvam C
    Eur J Clin Nutr; 2005 Oct; 59(10):1121-8. PubMed ID: 16015260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB.
    Sriram S; Subramanian S; Sathiakumar D; Venkatesh R; Salerno MS; McFarlane CD; Kambadur R; Sharma M
    Aging Cell; 2011 Dec; 10(6):931-48. PubMed ID: 21771249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative Stress, Sarcopenia, Antioxidant Strategies and Exercise: Molecular Aspects.
    Brioche T; Lemoine-Morel S
    Curr Pharm Des; 2016; 22(18):2664-78. PubMed ID: 26891808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Beneficial Effects of Taurine to Counteract Sarcopenia.
    Scicchitano BM; Sica G
    Curr Protein Pept Sci; 2018; 19(7):673-680. PubMed ID: 27875962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function.
    Thoma A; Akter-Miah T; Reade RL; Lightfoot AP
    Biogerontology; 2020 Aug; 21(4):475-484. PubMed ID: 32447556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging.
    Walsh ME; Bhattacharya A; Sataranatarajan K; Qaisar R; Sloane L; Rahman MM; Kinter M; Van Remmen H
    Aging Cell; 2015 Dec; 14(6):957-70. PubMed ID: 26290460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of skeletal muscle ageing; avenues for therapeutic intervention.
    Lightfoot AP; McCormick R; Nye GA; McArdle A
    Curr Opin Pharmacol; 2014 Jun; 16():116-21. PubMed ID: 24880707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin D signaling in myogenesis: potential for treatment of sarcopenia.
    Wagatsuma A; Sakuma K
    Biomed Res Int; 2014; 2014():121254. PubMed ID: 25197630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melatonin as a Potential Agent in the Treatment of Sarcopenia.
    Coto-Montes A; Boga JA; Tan DX; Reiter RJ
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27783055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD.
    Jang YC; Liu Y; Hayworth CR; Bhattacharya A; Lustgarten MS; Muller FL; Chaudhuri A; Qi W; Li Y; Huang JY; Verdin E; Richardson A; Van Remmen H
    Aging Cell; 2012 Oct; 11(5):770-82. PubMed ID: 22672615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal Muscle Cell Oxidative Stress as a Possible Therapeutic Target in a Denervation-Induced Experimental Sarcopenic Model.
    Kinoshita H; Orita S; Inage K; Yamauchi K; Abe K; Inoue M; Norimoto M; Umimura T; Eguchi Y; Fujimoto K; Shiga Y; Kanamoto H; Aoki Y; Furuya T; Suzuki M; Akazawa T; Takahashi K; Ohtori S
    Spine (Phila Pa 1976); 2019 Apr; 44(8):E446-E455. PubMed ID: 30299418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between human aging muscle and oxidative system pathway.
    Doria E; Buonocore D; Focarelli A; Marzatico F
    Oxid Med Cell Longev; 2012; 2012():830257. PubMed ID: 22685621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials.
    Marzetti E; Calvani R; Cesari M; Buford TW; Lorenzi M; Behnke BJ; Leeuwenburgh C
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2288-301. PubMed ID: 23845738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutritional influences on age-related skeletal muscle loss.
    Welch AA
    Proc Nutr Soc; 2014 Feb; 73(1):16-33. PubMed ID: 24229650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.