BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 25098014)

  • 1. In-shoe plantar pressures and ground reaction forces during overweight adults' overground walking.
    de Castro MP; Abreu SC; Sousa H; Machado L; Santos R; Vilas-Boas JP
    Res Q Exerc Sport; 2014 Jun; 85(2):188-97. PubMed ID: 25098014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of gait cadence on the ground reaction forces and plantar pressures during load carriage of young adults.
    Castro MP; Figueiredo MC; Abreu S; Sousa H; Machado L; Santos R; Vilas-Boas JP
    Appl Ergon; 2015 Jul; 49():41-6. PubMed ID: 25766421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plantar pressures and ground reaction forces during walking of individuals with unilateral transfemoral amputation.
    Castro MP; Soares D; Mendes E; Machado L
    PM R; 2014 Aug; 6(8):698-707.e1. PubMed ID: 24487128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of pressure-relief insoles developed for loaded gait (backpackers and obese people) on plantar pressure distribution and ground reaction forces.
    Peduzzi de Castro M; Abreu S; Pinto V; Santos R; Machado L; Vaz M; Vilas-Boas JP
    Appl Ergon; 2014 Jul; 45(4):1028-34. PubMed ID: 24468683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground reaction forces and plantar pressure distribution during occasional loaded gait.
    Castro M; Abreu S; Sousa H; Machado L; Santos R; Vilas-Boas JP
    Appl Ergon; 2013 May; 44(3):503-9. PubMed ID: 23157973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.
    Chang R; Rodrigues PA; Van Emmerik RE; Hamill J
    J Biomech; 2014 Aug; 47(11):2571-7. PubMed ID: 24992816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between clinical measures of static foot posture and plantar pressure during static standing and walking.
    Jonely H; Brismée JM; Sizer PS; James CR
    Clin Biomech (Bristol, Avon); 2011 Oct; 26(8):873-9. PubMed ID: 21632159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnitude and Spatial Distribution of Impact Intensity Under the Foot Relates to Initial Foot Contact Pattern.
    Breine B; Malcolm P; Segers V; Gerlo J; Derie R; Pataky T; Frederick EC; De Clercq D
    J Appl Biomech; 2017 Dec; 33(6):431-436. PubMed ID: 28657790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rearfoot and midfoot or forefoot impacts in habitually shod runners.
    Boyer ER; Rooney BD; Derrick TR
    Med Sci Sports Exerc; 2014 Jul; 46(7):1384-91. PubMed ID: 24300124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of heel height and shoe insert on comfort perception and biomechanical performance of young female adults during walking.
    Hong WH; Lee YH; Chen HC; Pei YC; Wu CY
    Foot Ankle Int; 2005 Dec; 26(12):1042-8. PubMed ID: 16390637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Plantar Pressure Distribution in Relationship to Body Mass Index in Czech Women During Walking.
    Tománková K; Přidalová M; Svoboda Z; Cuberek R
    J Am Podiatr Med Assoc; 2017 May; 107(3):208-214. PubMed ID: 28650759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of eliminating leg length difference on plantar foot pressure distribution in patients wearing forefoot offloading shoe.
    Palmanovich E; Ayalon M; Sira DB; Nyska M; Hetsroni I
    Foot (Edinb); 2017 Dec; 33():39-43. PubMed ID: 29126041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. School-based screening of plantar pressures during level walking with a backpack among overweight and obese schoolchildren.
    Pau M; Leban B; Corona F; Gioi S; Nussbaum MA
    Ergonomics; 2016 May; 59(5):697-703. PubMed ID: 26226045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plantar pressure reduction in an incremental weight-bearing system.
    Flynn TW; Canavan PK; Cavanagh PR; Chiang JH
    Phys Ther; 1997 Apr; 77(4):410-6. PubMed ID: 9105343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plantar foot pressures during treadmill walking with high-heel and low-heel shoes.
    Nyska M; McCabe C; Linge K; Klenerman L
    Foot Ankle Int; 1996 Nov; 17(11):662-6. PubMed ID: 8946179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of impeded medial longitudinal arch drop on vertical ground reaction force and center of pressure during static loading.
    Chen SJ; Gielo-Perczak K
    Foot Ankle Int; 2011 Jan; 32(1):77-84. PubMed ID: 21288438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plantar pressure sensors indicate women to have a significantly higher peak pressure on the hallux, toes, forefoot, and medial of the foot compared to men.
    Yamamoto T; Hoshino Y; Kanzaki N; Nukuto K; Yamashita T; Ibaraki K; Nagamune K; Nagai K; Araki D; Matsushita T; Kuroda R
    J Foot Ankle Res; 2020 Jul; 13(1):40. PubMed ID: 32611444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of shoe modifications on center of pressure and in-shoe plantar pressures.
    Xu H; Akai M; Kakurai S; Yokota K; Kaneko H
    Am J Phys Med Rehabil; 1999; 78(6):516-24. PubMed ID: 10574166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of center of pressure alteration on the ground reaction force during gait: A statistical model.
    Shaulian H; Solomonow-Avnon D; Herman A; Rozen N; Haim A; Wolf A
    Gait Posture; 2018 Oct; 66():107-113. PubMed ID: 30172216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.