These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25098420)

  • 1. The diversity of rice phytocystatins.
    Christoff AP; Margis R
    Mol Genet Genomics; 2014 Dec; 289(6):1321-30. PubMed ID: 25098420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rice bifunctional phytocystatin is a dual modulator of legumain and papain-like proteases.
    Christoff AP; Passaia G; Salvati C; Alves-Ferreira M; Margis-Pinheiro M; Margis R
    Plant Mol Biol; 2016 Sep; 92(1-2):193-207. PubMed ID: 27325119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Unraveling the origin of the structural and functional diversity of plant cystatins.
    Balbinott N; Margis R
    Plant Sci; 2022 Aug; 321():111342. PubMed ID: 35696902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico analysis of sequential, structural and functional diversity of wheat cystatins and its implication in plant defense.
    Dutt S; Singh VK; Marla SS; Kumar A
    Genomics Proteomics Bioinformatics; 2010 Mar; 8(1):42-56. PubMed ID: 20451161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant expression, characterization and phylogenetic studies of novels cystatins-like proteins of sweet orange (Citrus sinensis) and clementine (Citrus clementina).
    Schneider VK; da Silva Ferrara TF; Rocha SV; Santos-Júnior CD; Neo-Justino DM; da Cunha AF; de Oliveira da Silva JPM; Dos Santos Tersariol IL; Carmona AK; Henrique-Silva F; Soares-Costa A
    Int J Biol Macromol; 2020 Jun; 152():546-553. PubMed ID: 32109474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases.
    Martinez M; Diaz-Mendoza M; Carrillo L; Diaz I
    FEBS Lett; 2007 Jun; 581(16):2914-8. PubMed ID: 17543305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering legumain genes in rice.
    Christoff AP; Turchetto-Zolet AC; Margis R
    Plant Sci; 2014 Feb; 215-216():100-9. PubMed ID: 24388520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds.
    Szewińska J; Simińska J; Bielawski W
    J Plant Physiol; 2016 Dec; 207():10-21. PubMed ID: 27771502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.).
    Mangena P
    Protein Pept Lett; 2020; 27(2):135-144. PubMed ID: 31612812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional diversity within the cystatin gene family of Hordeum vulgare.
    Abraham Z; Martinez M; Carbonero P; Diaz I
    J Exp Bot; 2006; 57(15):4245-55. PubMed ID: 17099080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant seed cystatins and their target enzymes of endogenous and exogenous origin.
    Arai S; Matsumoto I; Emori Y; Abe K
    J Agric Food Chem; 2002 Oct; 50(22):6612-7. PubMed ID: 12381160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A triticale water-deficit-inducible phytocystatin inhibits endogenous cysteine proteinases in vitro.
    Chojnacka M; Szewińska J; Mielecki M; Nykiel M; Imai R; Bielawski W; Orzechowski S
    J Plant Physiol; 2015 Feb; 174():161-5. PubMed ID: 25462979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley.
    Martínez M; Abraham Z; Carbonero P; Díaz I
    Mol Genet Genomics; 2005 Jun; 273(5):423-32. PubMed ID: 15887031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., delays natural and stress-induced leaf senescence in apple.
    Tan Y; Yang Y; Li C; Liang B; Li M; Ma F
    Plant Physiol Biochem; 2017 Jun; 115():219-228. PubMed ID: 28384562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of expression and inhibitory activity of a TrcC-6 phytocystatin present in developing and germinating seeds of triticale (×Triticosecale Wittm.).
    Simińska J; Orzechowski S; Bielawski W
    Plant Physiol Biochem; 2015 Nov; 96():209-16. PubMed ID: 26298807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugarcane cystatins: From discovery to biotechnological applications.
    Shibao PYT; Santos-Júnior CD; Santiago AC; Mohan C; Miguel MC; Toyama D; Vieira MAS; Narayanan S; Figueira A; Carmona AK; Schiermeyer A; Soares-Costa A; Henrique-Silva F
    Int J Biol Macromol; 2021 Jan; 167():676-686. PubMed ID: 33285201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential use of phytocystatins in crop improvement, with a particular focus on legumes.
    Kunert KJ; van Wyk SG; Cullis CA; Vorster BJ; Foyer CH
    J Exp Bot; 2015 Jun; 66(12):3559-70. PubMed ID: 25944929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional characterization of the triticale (x Triticosecale Wittm.) phytocystatin TrcC-8 and its dimerization-dependent inhibitory activity.
    Prabucka B; Mielecki M; Chojnacka M; Bielawski W; Czarnocki-Cieciura M; Orzechowski S
    Phytochemistry; 2017 Oct; 142():1-10. PubMed ID: 28654769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of tarocystatin-papain complex: implications for the inhibition property of group-2 phytocystatins.
    Chu MH; Liu KL; Wu HY; Yeh KW; Cheng YS
    Planta; 2011 Aug; 234(2):243-54. PubMed ID: 21416241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of seed germination and seedling growth by an Arabidopsis phytocystatin isoform, AtCYS6.
    Hwang JE; Hong JK; Je JH; Lee KO; Kim DY; Lee SY; Lim CO
    Plant Cell Rep; 2009 Nov; 28(11):1623-32. PubMed ID: 19690865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.