These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25098546)

  • 1. In vitro fermentation of spent turmeric powder with a mixed culture of pig faecal bacteria.
    Han KH; Azuma S; Fukushima M
    Food Funct; 2014 Oct; 5(10):2446-52. PubMed ID: 25098546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum.
    Giuberti G; Gallo A; Moschini M; Masoero F
    Animal; 2013 Sep; 7(9):1446-53. PubMed ID: 23782951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro fermentation characteristics of whole grain wheat flakes and the effect of toasting on prebiotic potential.
    Connolly ML; Lovegrove JA; Tuohy KM
    J Med Food; 2012 Jan; 15(1):33-43. PubMed ID: 21877952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation profiles of wheat dextrin, inulin and partially hydrolyzed guar gum using an in vitro digestion pretreatment and in vitro batch fermentation system model.
    Noack J; Timm D; Hospattankar A; Slavin J
    Nutrients; 2013 May; 5(5):1500-10. PubMed ID: 23645025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evaluation of the microbiota modulation abilities of different sized whole oat grain flakes.
    Connolly ML; Lovegrove JA; Tuohy KM
    Anaerobe; 2010 Oct; 16(5):483-8. PubMed ID: 20624475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (Vicia faba): dynamic modulation of the intestinal microbiota and metabolomic output.
    Gullón P; Gullón B; Tavaria F; Vasconcelos M; Gomes AM
    Food Funct; 2015 Oct; 6(10):3316-22. PubMed ID: 26252418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrepancies in microbiota composition along the pig gastrointestinal tract between in vivo observations and an in vitro batch fermentation model.
    Boudry C; Poelaert C; Portetelle D; Thewis A; Bindelle J
    J Anim Sci; 2012 Dec; 90 Suppl 4():393-6. PubMed ID: 23365390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures.
    Salazar N; Ruas-Madiedo P; Kolida S; Collins M; Rastall R; Gibson G; de Los Reyes-Gavilán CG
    Int J Food Microbiol; 2009 Nov; 135(3):260-7. PubMed ID: 19735956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the effects of longer chain inulins with different degrees of polymerization on colonic fermentation in a mixed culture of Swine fecal bacteria.
    Han KH; Kobayashi Y; Nakamura Y; Shimada K; Aritsuka T; Ohba K; Morita T; Fukushima M
    J Nutr Sci Vitaminol (Tokyo); 2014; 60(3):206-12. PubMed ID: 25078377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feeding potato flakes affects cecal short-chain fatty acids, microflora and fecal bile acids in rats.
    Han KH; Hayashi N; Hashimoto N; Shimada K; Sekikawa M; Noda T; Fukushima M
    Ann Nutr Metab; 2008; 52(1):1-7. PubMed ID: 18235187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs.
    Bird AR; Vuaran M; Brown I; Topping DL
    Br J Nutr; 2007 Jan; 97(1):134-44. PubMed ID: 17217569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles.
    Bui AT; Williams BA; Hoedt EC; Morrison M; Mikkelsen D; Gidley MJ
    Food Funct; 2020 Jun; 11(6):5635-5646. PubMed ID: 32537617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential fermentation of glucose-based carbohydrates in vitro by human faecal bacteria--a study of pyrodextrinised starches from different sources.
    Laurentin A; Edwards CA
    Eur J Nutr; 2004 Jun; 43(3):183-9. PubMed ID: 15168041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro fermentation potential of the residue of Korean red ginseng root in a mixed culture of swine faecal bacteria.
    Han KH; Enomoto M; Pelpolage S; Nagata R; Fukuma N; Fukushima M
    Food Funct; 2020 Jul; 11(7):6202-6214. PubMed ID: 32588857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems.
    Martín-Peláez S; Gibson GR; Martín-Orúe SM; Klinder A; Rastall RA; La Ragione RM; Woodward MJ; Costabile A
    FEMS Microbiol Ecol; 2008 Dec; 66(3):608-19. PubMed ID: 19049655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro fermentation of gum acacia - impact on the faecal microbiota.
    Alarifi S; Bell A; Walton G
    Int J Food Sci Nutr; 2018 Sep; 69(6):696-704. PubMed ID: 29334803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different carbohydrates on in vitro fermentation activity and bacterial numbers of porcine inocula under osmotic stress conditions.
    Rink F; Bauer E; Eklund M; Mosenthin R
    Arch Anim Nutr; 2011 Dec; 65(6):445-59. PubMed ID: 22256675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children.
    François IE; Lescroart O; Veraverbeke WS; Marzorati M; Possemiers S; Hamer H; Windey K; Welling GW; Delcour JA; Courtin CM; Verbeke K; Broekaert WF
    J Pediatr Gastroenterol Nutr; 2014 May; 58(5):647-53. PubMed ID: 24368315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potato powders prepared by successive cooking-process depending on resistant starch content affect the intestinal fermentation in rats.
    Kawakami S; Han KH; Araki T; Ohba K; Wakabayashi T; Shimada K; Fukushima M
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):359-364. PubMed ID: 27832729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria.
    Bindelle J; Buldgen A; Delacollette M; Wavreille J; Agneessens R; Destain JP; Leterme P
    J Anim Sci; 2009 Feb; 87(2):583-93. PubMed ID: 18791157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.