These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25098607)

  • 1. Tailoring the optical gap of silicon quantum dots without changing their size.
    Li H; Wu Z; Zhou T; Sellinger A; Lusk MT
    Phys Chem Chem Phys; 2014 Sep; 16(36):19275-81. PubMed ID: 25098607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal size regime for oxidation-resistant silicon quantum dots.
    Li H; Lusk MT; Collins RT; Wu Z
    ACS Nano; 2012 Nov; 6(11):9690-9. PubMed ID: 23061893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots.
    Erogbogbo F; Chang CW; May J; Prasad PN; Swihart MT
    Nanoscale; 2012 Aug; 4(16):5163-8. PubMed ID: 22802158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sized controlled synthesis, purification, and cell studies with silicon quantum dots.
    Shiohara A; Prabakar S; Faramus A; Hsu CY; Lai PS; Northcote PT; Tilley RD
    Nanoscale; 2011 Aug; 3(8):3364-70. PubMed ID: 21727983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids.
    Choi JK; Jang S; Sohn H; Jeong HD
    J Am Chem Soc; 2009 Dec; 131(49):17894-900. PubMed ID: 19911790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient exciton transport between strongly quantum-confined silicon quantum dots.
    Lin Z; Li H; Franceschetti A; Lusk MT
    ACS Nano; 2012 May; 6(5):4029-38. PubMed ID: 22468899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon quantum dots for biological applications.
    Chinnathambi S; Chen S; Ganesan S; Hanagata N
    Adv Healthc Mater; 2014 Jan; 3(1):10-29. PubMed ID: 23949967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandgap Tuning of Silicon Quantum Dots by Surface Functionalization with Conjugated Organic Groups.
    Zhou T; Anderson RT; Li H; Bell J; Yang Y; Gorman BP; Pylypenko S; Lusk MT; Sellinger A
    Nano Lett; 2015 Jun; 15(6):3657-63. PubMed ID: 25971956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal surface functionalization of silicon quantum dots.
    Li QS; Zhang RQ; Lee ST; Niehaus TA; Frauenheim T
    J Chem Phys; 2008 Jun; 128(24):244714. PubMed ID: 18601372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of singly hydrated silanone on silicon quantum dot surfaces: density functional simulations.
    Eyre RJ; Goss JP; MacLeod RM; Briddon PR
    Phys Chem Chem Phys; 2008 Aug; 10(30):4495-502. PubMed ID: 18654691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements.
    Segets D; Lucas JM; Klupp Taylor RN; Scheele M; Zheng H; Alivisatos AP; Peukert W
    ACS Nano; 2012 Oct; 6(10):9021-32. PubMed ID: 22984808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon quantum dots: surface matters.
    Dohnalová K; Gregorkiewicz T; Kůsová K
    J Phys Condens Matter; 2014 Apr; 26(17):173201. PubMed ID: 24713583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of low sensitizing efficiency of quantum dots in organic solar cells.
    ten Cate S; Schins JM; Siebbeles LD
    ACS Nano; 2012 Oct; 6(10):8983-8. PubMed ID: 22950740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple route to growth of silicon nanowires.
    Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Photon Excitation Spectroscopy of Silicon Quantum Dots and Ramifications for Bio-Imaging.
    Furey BJ; Stacy BJ; Shah T; Barba-Barba RM; Carriles R; Bernal A; Mendoza BS; Korgel BA; Downer MC
    ACS Nano; 2022 Apr; 16(4):6023-6033. PubMed ID: 35357114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional etching of silicon for the fabrication of low-dimensional and suspended devices.
    Walavalkar SS; Homyk AP; Henry MD; Scherer A
    Nanoscale; 2013 Feb; 5(3):927-31. PubMed ID: 23292113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct-bandgap InAs quantum-dots have long-range electron-hole exchange whereas indirect gap Si dots have short-range exchange.
    Luo JW; Franceschetti A; Zunger A
    Nano Lett; 2009 Jul; 9(7):2648-53. PubMed ID: 19583283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoluminescence of silicon quantum dots in nanospheres.
    Zhang Y; Han X; Zhang J; Liu Y; Huang H; Ming H; Lee ST; Kang Z
    Nanoscale; 2012 Dec; 4(24):7760-5. PubMed ID: 23138612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent porous silicon biological probes with high quantum efficiency and stability.
    Tu CC; Chou YN; Hung HC; Wu J; Jiang S; Lin LY
    Opt Express; 2014 Dec; 22(24):29996-30003. PubMed ID: 25606929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.