These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 25098717)
1. An animal experimental study of porous magnesium scaffold degradation and osteogenesis. Liu YJ; Yang ZY; Tan LL; Li H; Zhang YZ Braz J Med Biol Res; 2014 Aug; 47(8):715-20. PubMed ID: 25098717 [TBL] [Abstract][Full Text] [Related]
2. [Preparation and Lan Y; Zhang J; Ran Y; Li B; Cai X; Jiang T; Xue D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Jun; 38(6):755-762. PubMed ID: 38918199 [TBL] [Abstract][Full Text] [Related]
3. A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting. Tanaka K; Takemoto M; Fujibayashi S; Neo M; Shikinami Y; Nakamura T Spine (Phila Pa 1976); 2011 Mar; 36(6):441-7. PubMed ID: 21124263 [TBL] [Abstract][Full Text] [Related]
4. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Lai Y; Li Y; Cao H; Long J; Wang X; Li L; Li C; Jia Q; Teng B; Tang T; Peng J; Eglin D; Alini M; Grijpma DW; Richards G; Qin L Biomaterials; 2019 Mar; 197():207-219. PubMed ID: 30660996 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo evaluation of MgF Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982 [TBL] [Abstract][Full Text] [Related]
6. [EXPERIMENTAL STUDY ON BONE DEFECT REPAIR WITH COMPOSITE OF ATTAPULGITE/COLLAGEN TYPE I/POLY (CAPROLACTONE) IN RABBITS]. Zhang X; Song X; Wang W; Li Z; Zhao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 May; 30(5):626-633. PubMed ID: 29786308 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility and osteogenic capacity of additively manufactured biodegradable porous WE43 scaffolds: An in vivo study in a canine model. Gu Y; Liu Y; Bühring J; Tian L; Koblenzer M; Schröder KU; Li F; Van Dessel J; Politis C; Jahr H; Sun Y Biomater Adv; 2024 Nov; 164():213984. PubMed ID: 39153456 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional printed calcium phosphate scaffolds emulate bone microstructure to promote bone regrowth and repair. Takase K; Niikura T; Fukui T; Kumabe Y; Sawauchi K; Yoshikawa R; Yamamoto Y; Nishida R; Matsumoto T; Kuroda R; Oe K J Mater Sci Mater Med; 2024 Sep; 35(1):53. PubMed ID: 39225913 [TBL] [Abstract][Full Text] [Related]
9. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2. Kleer-Reiter N; Julmi S; Feichtner F; Waselau AC; Klose C; Wriggers P; Maier HJ; Meyer-Lindenberg A Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33827052 [TBL] [Abstract][Full Text] [Related]
10. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model. He Y; Dong Y; Cui F; Chen X; Lin R PLoS One; 2015; 10(8):e0135366. PubMed ID: 26258851 [TBL] [Abstract][Full Text] [Related]
11. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Cao H; Kuboyama N Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045 [TBL] [Abstract][Full Text] [Related]
12. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects. Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709 [TBL] [Abstract][Full Text] [Related]
13. Bone regeneration using porous titanium particles versus bovine hydroxyapatite: a sinus lift study in rabbits. Lambert F; Lecloux G; Léonard A; Sourice S; Layrolle P; Rompen E Clin Implant Dent Relat Res; 2013 Jun; 15(3):412-26. PubMed ID: 21815992 [TBL] [Abstract][Full Text] [Related]
14. [ Zhang N; Liu N; Sun C; Zhu J; Wang D; Dai Y; Wu Y; Wang Y; Li J; Zhao D; Yan J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):298-305. PubMed ID: 29806278 [TBL] [Abstract][Full Text] [Related]
15. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect. Luo Y; Li D; Zhao J; Yang Z; Kang P Biomed Mater Eng; 2018; 29(6):699-721. PubMed ID: 30282329 [TBL] [Abstract][Full Text] [Related]
16. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Matsuura A; Kubo T; Doi K; Hayashi K; Morita K; Yokota R; Hayashi H; Hirata I; Okazaki M; Akagawa Y Dent Mater J; 2009 Mar; 28(2):234-42. PubMed ID: 19496405 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
18. [An experimental study on repairing bone defect with the biodegradable polycaprolactone material]. Aahmat Y; Chen T; Chen Z; Liu D; Wang Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):439-42. PubMed ID: 16038457 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of BMP-2 tethered polyelectrolyte coatings on hydroxyapatite scaffolds in vivo. Shiels S; Oh S; Bae C; Guda T; Singleton B; Dean DD; Wenke JC; Appleford MR; Ong JL J Biomed Mater Res B Appl Biomater; 2012 Oct; 100(7):1782-91. PubMed ID: 22807331 [TBL] [Abstract][Full Text] [Related]
20. In vivo evaluation of composites of PLGA and apatite with two different levels of crystallinity. Hayakawa T; Mochizuki C; Hara H; Yang F; Shen H; Wang S; Sato M J Mater Sci Mater Med; 2010 Jan; 21(1):251-8. PubMed ID: 19639266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]