These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25098964)

  • 1. Encoding of social signals in all three electrosensory pathways of Eigenmannia virescens.
    Stöckl A; Sinz F; Benda J; Grewe J
    J Neurophysiol; 2014 Nov; 112(9):2076-91. PubMed ID: 25098964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens.
    Tan EW; Nizar JM; Carrera-G E; Fortune ES
    Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the Jamming Avoidance Response: weakly electric fish respond to the envelope of social electrosensory signals.
    Stamper SA; Madhav MS; Cowan NJ; Fortune ES
    J Exp Biol; 2012 Dec; 215(Pt 23):4196-207. PubMed ID: 23136154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of global electrosensory signals on motion processing in the midbrain of Eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Sep; 191(9):865-72. PubMed ID: 16001182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural heterogeneity and efficient population codes for communication signals.
    Marsat G; Maler L
    J Neurophysiol; 2010 Nov; 104(5):2543-55. PubMed ID: 20631220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding electric signals by Gymnotus omarorum: heuristic modeling of tuberous electroreceptor organs.
    Cilleruelo ER; Caputi AA
    Brain Res; 2012 Jan; 1434():102-14. PubMed ID: 21835395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus.
    Walz H; Hupé GJ; Benda J; Lewis JE
    J Physiol Paris; 2013; 107(1-2):13-25. PubMed ID: 22981958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the electrosensory system in postural control of the weakly electric fish Eigenmannia virescens.
    Feng AS
    J Neurobiol; 1977 Sep; 8(5):429-37. PubMed ID: 903765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae).
    Turner CR; Derylo M; de Santana CD; Alves-Gomes JA; Smith GT
    J Exp Biol; 2007 Dec; 210(Pt 23):4104-22. PubMed ID: 18025011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae).
    Petzold JM; Marsat G; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):200-215. PubMed ID: 27989653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role of synchronicity of neural activity based on dynamic plasticity of synapses in encoding spatiotemporal features of electrosensory stimuli.
    Fujita K; Kashimori Y; Zheng M; Kambara T
    Math Biosci; 2006 May; 201(1-2):113-24. PubMed ID: 16504215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus.
    Engler G; Zupanc GK
    J Comp Physiol A; 2001 Nov; 187(9):747-56. PubMed ID: 11778836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding of information in models of tuberous electroreceptors.
    St-Hilaire M; Longtin A
    Math Biosci; 2004; 188():157-74. PubMed ID: 14766100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system.
    Gómez L; Budelli R; Grant K; Caputi AA
    J Exp Biol; 2004 Jun; 207(Pt 14):2443-53. PubMed ID: 15184516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static frequency tuning accounts for changes in neural synchrony evoked by transient communication signals.
    Walz H; Grewe J; Benda J
    J Neurophysiol; 2014 Aug; 112(4):752-65. PubMed ID: 24848476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed-loop stabilization of the Jamming Avoidance Response reveals its locally unstable and globally nonlinear dynamics.
    Madhav MS; Stamper SA; Fortune ES; Cowan NJ
    J Exp Biol; 2013 Nov; 216(Pt 22):4272-84. PubMed ID: 23997196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of neurons in the complex of the nucleus electrosensorius of Sternopygus and Eigenmannia: diencephalic substrates for the evolution of the jamming avoidance response.
    Green RL; Rose GJ
    Brain Behav Evol; 2004; 64(2):85-103. PubMed ID: 15205544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.