These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 25098977)
1. Differences in Trunk Accelerometry Between Frail and Nonfrail Elderly Persons in Sit-to-Stand and Stand-to-Sit Transitions Based on a Mobile Inertial Sensor. Galán-Mercant A; Cuesta-Vargas AI JMIR Mhealth Uhealth; 2013 Aug; 1(2):e21. PubMed ID: 25098977 [TBL] [Abstract][Full Text] [Related]
2. Differences in trunk kinematic between frail and nonfrail elderly persons during turn transition based on a smartphone inertial sensor. Galán-Mercant A; Cuesta-Vargas AI Biomed Res Int; 2013; 2013():279197. PubMed ID: 24369530 [TBL] [Abstract][Full Text] [Related]
3. Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. Galán-Mercant A; Cuesta-Vargas AI BMC Res Notes; 2014 Feb; 7():100. PubMed ID: 24559490 [TBL] [Abstract][Full Text] [Related]
4. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Ganea R; Paraschiv-Ionescu A; Büla C; Rochat S; Aminian K Med Eng Phys; 2011 Nov; 33(9):1086-93. PubMed ID: 21601505 [TBL] [Abstract][Full Text] [Related]
5. Thigh-Derived Inertial Sensor Metrics to Assess the Sit-to-Stand and Stand-to-Sit Transitions in the Timed Up and Go (TUG) Task for Quantifying Mobility Impairment in Multiple Sclerosis. Witchel HJ; Oberndorfer C; Needham R; Healy A; Westling CEI; Guppy JH; Bush J; Barth J; Herberz C; Roggen D; Eskofier BM; Rashid W; Chockalingam N; Klucken J Front Neurol; 2018; 9():684. PubMed ID: 30271371 [No Abstract] [Full Text] [Related]
6. An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit. Millor N; Lecumberri P; Gómez M; Martínez-Ramírez A; Izquierdo M J Neuroeng Rehabil; 2013 Aug; 10():86. PubMed ID: 24059755 [TBL] [Abstract][Full Text] [Related]
7. Kinematics and dynamic complexity of postural transitions in frail elderly subjects. Ganea R; Paraschiv-Ionescu A; Salarian A; Büla C; Martin E; Rochat S; Hoskovec C; Piot-Ziegler C; Aminian K Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6118-21. PubMed ID: 18003411 [TBL] [Abstract][Full Text] [Related]
8. Postural transitions detection and characterization in healthy and patient populations using a single waist sensor. Atrsaei A; Dadashi F; Hansen C; Warmerdam E; Mariani B; Maetzler W; Aminian K J Neuroeng Rehabil; 2020 Jun; 17(1):70. PubMed ID: 32493496 [TBL] [Abstract][Full Text] [Related]
9. Postural Transitions during Activities of Daily Living Could Identify Frailty Status: Application of Wearable Technology to Identify Frailty during Unsupervised Condition. Parvaneh S; Mohler J; Toosizadeh N; Grewal GS; Najafi B Gerontology; 2017; 63(5):479-487. PubMed ID: 28285311 [TBL] [Abstract][Full Text] [Related]
10. Clinical frailty syndrome assessment using inertial sensors embedded in smartphones. Galán-Mercant A; Cuesta-Vargas AI Physiol Meas; 2015 Sep; 36(9):1929-42. PubMed ID: 26245213 [TBL] [Abstract][Full Text] [Related]
11. Analysis of inter-joint coordination during the sit-to-stand and stand-to-sit tasks in stroke patients with hemiplegia. He J; Liu D; Hou M; Luo A; Wang S; Ma Y BMC Sports Sci Med Rehabil; 2023 Aug; 15(1):104. PubMed ID: 37587533 [TBL] [Abstract][Full Text] [Related]
12. High density muscle size and muscle power are associated with both gait and sit-to-stand kinematic parameters in frail nonagenarians. Millor N; Cadore EL; Gómez M; Martínez A; Lecumberri P; Martirikorena J; Idoate F; Izquierdo M J Biomech; 2020 May; 105():109766. PubMed ID: 32279932 [TBL] [Abstract][Full Text] [Related]
13. Time measurement characterization of stand-to-sit and sit-to-stand transitions by using a smartphone. González Rojas HA; Cuevas PC; Zayas Figueras EE; Foix SC; Sánchez Egea AJ Med Biol Eng Comput; 2018 May; 56(5):879-888. PubMed ID: 29063366 [TBL] [Abstract][Full Text] [Related]
14. Optimized scoring tool to quantify the functional performance during the sit-to-stand transition with a magneto-inertial measurement unit. Lepetit K; Mansour KB; Letocart A; Boudaoud S; Kinugawa K; Grosset JF; Marin F Clin Biomech (Bristol); 2019 Oct; 69():109-114. PubMed ID: 31330459 [TBL] [Abstract][Full Text] [Related]
15. Performance of Different Timed Up and Go Subtasks in Frailty Syndrome. Ansai JH; Farche ACS; Rossi PG; de Andrade LP; Nakagawa TH; Takahashi ACM J Geriatr Phys Ther; 2019; 42(4):287-293. PubMed ID: 29210935 [TBL] [Abstract][Full Text] [Related]
16. Kinematic parameters to evaluate functional performance of sit-to-stand and stand-to-sit transitions using motion sensor devices: a systematic review. Millor N; Lecumberri P; Gomez M; Martinez-Ramirez A; Izquierdo M IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):926-36. PubMed ID: 25014957 [TBL] [Abstract][Full Text] [Related]
17. Sit-stand and stand-sit transitions in older adults and patients with Parkinson's disease: event detection based on motion sensors versus force plates. Zijlstra A; Mancini M; Lindemann U; Chiari L; Zijlstra W J Neuroeng Rehabil; 2012 Oct; 9():75. PubMed ID: 23039219 [TBL] [Abstract][Full Text] [Related]
18. Older Adults with Weaker Muscle Strength Stand up from a Sitting Position with More Dynamic Trunk Use. van Lummel RC; Evers J; Niessen M; Beek PJ; van Dieën JH Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29673204 [TBL] [Abstract][Full Text] [Related]
19. Improve elderly people's sit-to-stand ability by using new designed additional armrests attaching on the standard walker. Chang CK; Lin YY; Wong PC; Kao HC; Chen HY; Lee SH; Cheng CK J Chin Med Assoc; 2018 Jan; 81(1):81-86. PubMed ID: 28974355 [TBL] [Abstract][Full Text] [Related]
20. Inertial Sensor-Based Variables Are Indicators of Frailty and Adverse Post-Operative Outcomes in Cardiovascular Disease Patients. Soangra R; Lockhart TE Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29865245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]