These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 25099302)
1. BDNF and Huntingtin protein modifications by manganese: implications for striatal medium spiny neuron pathology in manganese neurotoxicity. Stansfield KH; Bichell TJ; Bowman AB; Guilarte TR J Neurochem; 2014 Dec; 131(5):655-66. PubMed ID: 25099302 [TBL] [Abstract][Full Text] [Related]
2. Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. Liot G; Zala D; Pla P; Mottet G; Piel M; Saudou F J Neurosci; 2013 Apr; 33(15):6298-309. PubMed ID: 23575829 [TBL] [Abstract][Full Text] [Related]
3. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655 [TBL] [Abstract][Full Text] [Related]
4. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Thomas EA; Coppola G; Tang B; Kuhn A; Kim S; Geschwind DH; Brown TB; Luthi-Carter R; Ehrlich ME Hum Mol Genet; 2011 Mar; 20(6):1049-60. PubMed ID: 21177255 [TBL] [Abstract][Full Text] [Related]
5. Altered manganese homeostasis and manganese toxicity in a Huntington's disease striatal cell model are not explained by defects in the iron transport system. Williams BB; Kwakye GF; Wegrzynowicz M; Li D; Aschner M; Erikson KM; Bowman AB Toxicol Sci; 2010 Sep; 117(1):169-79. PubMed ID: 20547568 [TBL] [Abstract][Full Text] [Related]
6. Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF. Wang L; Lin F; Wang J; Wu J; Han R; Zhu L; Difiglia M; Qin Z Brain Res; 2012 Apr; 1449():69-82. PubMed ID: 22410294 [TBL] [Abstract][Full Text] [Related]
7. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Fusco FR; Zuccato C; Tartari M; Martorana A; De March Z; Giampà C; Cattaneo E; Bernardi G Eur J Neurosci; 2003 Sep; 18(5):1093-102. PubMed ID: 12956709 [TBL] [Abstract][Full Text] [Related]
8. Astrocytes from cortex and striatum show differential responses to mitochondrial toxin and BDNF: implications for protection of striatal neurons expressing mutant huntingtin. Saba J; López Couselo F; Turati J; Carniglia L; Durand D; de Laurentiis A; Lasaga M; Caruso C J Neuroinflammation; 2020 Oct; 17(1):290. PubMed ID: 33023623 [TBL] [Abstract][Full Text] [Related]
9. Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease. Ma Q; Yang J; Li T; Milner TA; Hempstead BL Neurobiol Dis; 2015 Oct; 82():466-477. PubMed ID: 26282324 [TBL] [Abstract][Full Text] [Related]
10. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice. Kovalenko M; Dragileva E; St Claire J; Gillis T; Guide JR; New J; Dong H; Kucherlapati R; Kucherlapati MH; Ehrlich ME; Lee JM; Wheeler VC PLoS One; 2012; 7(9):e44273. PubMed ID: 22970194 [TBL] [Abstract][Full Text] [Related]
11. BDNF overexpression in the forebrain rescues Huntington's disease phenotypes in YAC128 mice. Xie Y; Hayden MR; Xu B J Neurosci; 2010 Nov; 30(44):14708-18. PubMed ID: 21048129 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and nuclear huntingtin fragments in a mouse model of Huntington disease. Cho KJ; Lee BI; Cheon SY; Kim HW; Kim HJ; Kim GW Neuroscience; 2009 Nov; 163(4):1128-34. PubMed ID: 19646509 [TBL] [Abstract][Full Text] [Related]
13. Effect of early embryonic deletion of huntingtin from pyramidal neurons on the development and long-term survival of neurons in cerebral cortex and striatum. Dragatsis I; Dietrich P; Ren H; Deng YP; Del Mar N; Wang HB; Johnson IM; Jones KR; Reiner A Neurobiol Dis; 2018 Mar; 111():102-117. PubMed ID: 29274742 [TBL] [Abstract][Full Text] [Related]
14. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958 [TBL] [Abstract][Full Text] [Related]
16. Altering cortical input unmasks synaptic phenotypes in the YAC128 cortico-striatal co-culture model of Huntington disease. Schmidt ME; Buren C; Mackay JP; Cheung D; Dal Cengio L; Raymond LA; Hayden MR BMC Biol; 2018 Jun; 16(1):58. PubMed ID: 29945611 [TBL] [Abstract][Full Text] [Related]
17. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. Baquet ZC; Gorski JA; Jones KR J Neurosci; 2004 Apr; 24(17):4250-8. PubMed ID: 15115821 [TBL] [Abstract][Full Text] [Related]