These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25099327)

  • 1. Finite element model for nutrient distribution analysis of a hollow fiber membrane bioreactor.
    Unnikrishnan GU; Unnikrishnan VU; Reddy JN
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):229-38. PubMed ID: 25099327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering.
    Mohebbi-Kalhori D; Behzadmehr A; Doillon CJ; Hadjizadeh A
    J Artif Organs; 2012 Sep; 15(3):250-65. PubMed ID: 22610313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor.
    Shakeel M; Matthews PC; Graham RS; Waters SL
    Math Med Biol; 2013 Mar; 30(1):21-44. PubMed ID: 21994793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-D coupled computational model of biological cell proliferation and nutrient delivery in a perfusion bioreactor.
    Shakeel M
    Math Biosci; 2013 Mar; 242(1):86-94. PubMed ID: 23291465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphase modelling of the influence of fluid flow and chemical concentration on tissue growth in a hollow fibre membrane bioreactor.
    Pearson NC; Shipley RJ; Waters SL; Oliver JM
    Math Med Biol; 2014 Dec; 31(4):393-430. PubMed ID: 24036069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of hollow fiber membrane bioreactor for mammalian cell cultivation using computational hydrodynamics.
    Menshutina NV; Guseva EV; Safarov RR; Boudrant J
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):549-567. PubMed ID: 31786664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.
    Shakhawath Hossain M; Bergstrom DJ; Chen XB
    Biotechnol Bioeng; 2015 Dec; 112(12):2601-10. PubMed ID: 26061385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfusion enhances solute transfer into the shell of hollow fiber membrane bioreactors for bone tissue engineering.
    De Napoli IE; Catapano G
    Int J Artif Organs; 2010 Jun; 33(6):381-91. PubMed ID: 20669143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of culture conditions and nutrient supply in a hollow membrane sheet bioreactor for large-scale bone tissue engineering.
    Khademi R; Mohebbi-Kalhori D; Hadjizadeh A
    J Artif Organs; 2014 Mar; 17(1):69-80. PubMed ID: 24077884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bone tissue growth in hollow fibre membrane bioreactor: implications of various process parameters on tissue nutrition.
    Abdullah NS; Das DB; Ye H; Cui ZF
    Int J Artif Organs; 2006 Sep; 29(9):841-51. PubMed ID: 17033991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices.
    Mazaheri AR; Ahmadi G
    Artif Organs; 2006 Jan; 30(1):10-5. PubMed ID: 16409392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor.
    Whittaker RJ; Booth R; Dyson R; Bailey C; Parsons Chini L; Naire S; Payvandi S; Rong Z; Woollard H; Cummings LJ; Waters SL; Mawasse L; Chaudhuri JB; Ellis MJ; Michael V; Kuiper NJ; Cartmell S
    J Theor Biol; 2009 Feb; 256(4):533-46. PubMed ID: 19014952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.
    Hidalgo-Bastida LA; Thirunavukkarasu S; Griffiths S; Cartmell SH; Naire S
    Biotechnol Bioeng; 2012 Apr; 109(4):1095-9. PubMed ID: 22068720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow modeling in a novel non-perfusion conical bioreactor.
    Singh H; Ang ES; Lim TT; Hutmacher DW
    Biotechnol Bioeng; 2007 Aug; 97(5):1291-9. PubMed ID: 17216661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element study of scaffold architecture design and culture conditions for tissue engineering.
    Olivares AL; Marsal E; Planell JA; Lacroix D
    Biomaterials; 2009 Oct; 30(30):6142-9. PubMed ID: 19674779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor.
    Guyot Y; Luyten FP; Schrooten J; Papantoniou I; Geris L
    Biotechnol Bioeng; 2015 Dec; 112(12):2591-600. PubMed ID: 26059101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphase modelling of the effect of fluid shear stress on cell yield and distribution in a hollow fibre membrane bioreactor.
    Pearson NC; Waters SL; Oliver JM; Shipley RJ
    Biomech Model Mechanobiol; 2015 Apr; 14(2):387-402. PubMed ID: 25212097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.
    Liu X; Wang Y; Waite TD; Leslie G
    Water Res; 2015 May; 75():131-45. PubMed ID: 25768986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass transport in a microchannel bioreactor with a porous wall.
    Chen XB; Sui Y; Lee HP; Bai HX; Yu P; Winoto SH; Low HT
    J Biomech Eng; 2010 Jun; 132(6):061001. PubMed ID: 20887026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the use of hollow fibre membrane bioreactors for tissue generation by using rat bone marrow fibroblastic cells and a composite scaffold.
    Ye H; Xia Z; Ferguson DJ; Triffitt JT; Cui Z
    J Mater Sci Mater Med; 2007 Apr; 18(4):641-8. PubMed ID: 17546426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.