These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 25099328)

  • 1. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects.
    Xiong W; Zhang J
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):575-83. PubMed ID: 21744014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method.
    Zhang J; Johnson PC; Popel AS
    J Biomech; 2008; 41(1):47-55. PubMed ID: 17888442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T; Pan TW; Xing ZW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041916. PubMed ID: 19518265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation on red blood cell dynamics in microflow: Effect of cell deformability.
    Ju M; Leo HL; Kim S
    Clin Hemorheol Microcirc; 2017; 65(2):105-117. PubMed ID: 27447420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulations of deformation and aggregation of red blood cells in shear flow.
    Low HT; Ju M; Sui Y; Nazir T; Namgung B; Kim S
    Crit Rev Biomed Eng; 2013; 41(4-5):425-34. PubMed ID: 24941417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J
    J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle method for computer simulation of red blood cell motion in blood flow.
    Tsubota K; Wada S; Yamaguchi T
    Comput Methods Programs Biomed; 2006 Aug; 83(2):139-46. PubMed ID: 16879895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.
    Zhang J; Johnson PC; Popel AS
    Microvasc Res; 2009 May; 77(3):265-72. PubMed ID: 19323969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary.
    Ye T; Li H; Lam KY
    Microvasc Res; 2010 Dec; 80(3):453-63. PubMed ID: 20643152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of Deformation and Aggregation of Two Red Blood Cells in a Stenosed Microvessel by Dissipative Particle Dynamics.
    Xiao L; Liu Y; Chen S; Fu B
    Cell Biochem Biophys; 2016 Dec; 74(4):513-525. PubMed ID: 27704373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of dynamic interaction of two red blood cells in a capillary.
    Li H; Ye T; Lam KY
    Cell Biochem Biophys; 2014 Jul; 69(3):673-80. PubMed ID: 24590262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of the red blood cell aggregation and deformation behaviors in ultrasonic field.
    Ma X; Huang B; Wang G; Fu X; Qiu S
    Ultrason Sonochem; 2017 Sep; 38():604-613. PubMed ID: 27590752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.