These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 25099567)

  • 1. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study.
    Nguyen VH; Naili S
    Comput Methods Biomech Biomed Engin; 2013; 16(9):963-74. PubMed ID: 22288934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
    Nennig B; Tahar MB; Perrey-Debain E
    J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method.
    Gravenkamp H; Prager J; Saputra AA; Song C
    J Acoust Soc Am; 2012 Sep; 132(3):1358-67. PubMed ID: 22978864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission.
    Haïat G; Naili S; Grimal Q; Talmant M; Desceliers C; Soize C
    J Acoust Soc Am; 2009 Jun; 125(6):4043-52. PubMed ID: 19507985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of transient wave propagation in a heterogeneous solid layer coupled with fluid: application to long bones.
    Naili S; Nguyen VH; Vu MB; Desceliers C; Soize C
    J Acoust Soc Am; 2015 Feb; 137(2):668-78. PubMed ID: 25698002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale.
    Nguyen VH; Lemaire T; Naili S
    Med Eng Phys; 2010 May; 32(4):384-90. PubMed ID: 20226715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of acoustic guided wave propagation in cortical bone using a semi-analytical finite element method.
    Pereira D; Haiat G; Fernandes J; Belanger P
    J Acoust Soc Am; 2017 Apr; 141(4):2538. PubMed ID: 28464675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of negative dispersion by a nonlocal poroelastic theory.
    Chakraborty A
    J Acoust Soc Am; 2008 Jan; 123(1):56-67. PubMed ID: 18177138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization.
    Baron C; Naili S
    J Acoust Soc Am; 2010 Mar; 127(3):1307-17. PubMed ID: 20329830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission.
    Naili S; Vu MB; Grimal Q; Talmant M; Desceliers C; Soize C; Haïat G
    J Acoust Soc Am; 2010 Apr; 127(4):2622-34. PubMed ID: 20370043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D finite element simulation for ultrasonic propagation in tooth.
    Sun X; Witzel EA; Bian H; Kang S
    J Dent; 2008 Jul; 36(7):546-53. PubMed ID: 18514378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of porosity on effective diagonal stiffness coefficients (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study.
    Baron C; Talmant M; Laugier P
    J Acoust Soc Am; 2007 Sep; 122(3):1810. PubMed ID: 17927440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.