These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25099569)

  • 1. Computational modelling of cardiac electrophysiology: explanation of the variability of results from different numerical solvers.
    Pathmanathan P; Bernabeu MO; Niederer SA; Gavaghan DJ; Kay D
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):890-903. PubMed ID: 25099569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology.
    Krishnamoorthi S; Sarkar M; Klug WS
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1243-66. PubMed ID: 23873868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced-order modeling for cardiac electrophysiology. Application to parameter identification.
    Boulakia M; Schenone E; Gerbeau JF
    Int J Numer Method Biomed Eng; 2012; 28(6-7):727-44. PubMed ID: 25364848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology.
    Pezzuto S; Hake J; Sundnes J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26685879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations.
    Whiteley JP; Bishop MJ; Gavaghan DJ
    Bull Math Biol; 2007 Oct; 69(7):2199-225. PubMed ID: 17453303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical method for cardiac mechanoelectric simulations.
    Pathmanathan P; Whiteley JP
    Ann Biomed Eng; 2009 May; 37(5):860-73. PubMed ID: 19263223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced-order preconditioning for bidomain simulations.
    Deo M; Bauer S; Plank G; Vigmond E
    IEEE Trans Biomed Eng; 2007 May; 54(5):938-42. PubMed ID: 17518292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mind the Gap: A Semicontinuum Model for Discrete Electrical Propagation in Cardiac Tissue.
    Costa CM; Silva PA; dos Santos RW
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):765-74. PubMed ID: 26292333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of cardiac tissue electrophysiology: progress, challenges and open questions.
    Clayton RH; Bernus O; Cherry EM; Dierckx H; Fenton FH; Mirabella L; Panfilov AV; Sachse FB; Seemann G; Zhang H
    Prog Biophys Mol Biol; 2011 Jan; 104(1-3):22-48. PubMed ID: 20553746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of fibrillation threshold measurements and electrophysiologic testing procedures.
    Grumbach MP; Saxberg BE; Cohen RJ
    Comput Cardiol; 1987; 13():449-52. PubMed ID: 11541829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balancing conduction velocity error in cardiac electrophysiology using a modified quadrature approach.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2022 May; 38(5):e3589. PubMed ID: 35266643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical study on the effects of spatial and temporal discretization in cardiac electrophysiology.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3443. PubMed ID: 33522111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of clinical electrophysiological study.
    Zhu X; Wei D; Okazaki O
    Pacing Clin Electrophysiol; 2012 Jun; 35(6):718-29. PubMed ID: 22554232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model reduction using a posteriori analysis.
    Whiteley JP
    Math Biosci; 2010 May; 225(1):44-52. PubMed ID: 20117117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units.
    Garcia-Molla VM; Liberos A; Vidal A; Guillem MS; Millet J; Gonzalez A; Martinez-Zaldivar FJ; Climent AM
    Comput Biol Med; 2014 Jan; 44():15-26. PubMed ID: 24377685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A software framework for solving bioelectrical field problems based on finite elements.
    Sachse FB; Cole MJ; Stinstra JG
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2554-7. PubMed ID: 17946964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus protocol determines the most computationally efficient preconditioner for the bidomain equations.
    Bernabeu MO; Pathmanathan P; Pitt-Francis J; Kay D
    IEEE Trans Biomed Eng; 2010 Dec; 57(12):2806-15. PubMed ID: 20876005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inner-outer subcycling algorithm for parallel cardiac electrophysiology simulations.
    Laudenschlager S; Cai XC
    Int J Numer Method Biomed Eng; 2023 Mar; 39(3):e3677. PubMed ID: 36573938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology.
    Hoermann JM; Bertoglio C; Kronbichler M; Pfaller MR; Chabiniok R; Wall WA
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2959. PubMed ID: 29316340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.