These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25099569)

  • 21. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulations of complex and microscopic models of cardiac electrophysiology powered by multi-GPU platforms.
    GouvĂȘa de Barros B; Sachetto Oliveira R; Meira W; Lobosco M; Weber dos Santos R
    Comput Math Methods Med; 2012; 2012():824569. PubMed ID: 23227109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Meshfree implementation of individualized active cardiac dynamics.
    Wong KC; Wang L; Zhang H; Liu H; Shi P
    Comput Med Imaging Graph; 2010 Jan; 34(1):91-103. PubMed ID: 19501485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stiffness analysis of cardiac electrophysiological models.
    Spiteri RJ; Dean RC
    Ann Biomed Eng; 2010 Dec; 38(12):3592-604. PubMed ID: 20582476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accelerating large cardiac bidomain simulations by arnoldi preconditioning.
    Deo M; Bauer S; Plank G; Vigmond E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3923-6. PubMed ID: 17946209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patient-specific modelling of cardiac electrophysiology in heart-failure patients.
    Potse M; Krause D; Kroon W; Murzilli R; Muzzarelli S; Regoli F; Caiani E; Prinzen FW; Krause R; Auricchio A
    Europace; 2014 Nov; 16 Suppl 4(Suppl 4):iv56-iv61. PubMed ID: 25362171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational tools for modeling electrical activity in cardiac tissue.
    Vigmond EJ; Hughes M; Plank G; Leon LJ
    J Electrocardiol; 2003; 36 Suppl():69-74. PubMed ID: 14716595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient time splitting schemes for the monodomain equation in cardiac electrophysiology.
    Lindner LP; Gerach T; Jahnke T; Loewe A; Weiss D; Wieners C
    Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3666. PubMed ID: 36562492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvers for the cardiac bidomain equations.
    Vigmond EJ; Weber dos Santos R; Prassl AJ; Deo M; Plank G
    Prog Biophys Mol Biol; 2008; 96(1-3):3-18. PubMed ID: 17900668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A two-current model for the dynamics of cardiac membrane.
    Mitchell CC; Schaeffer DG
    Bull Math Biol; 2003 Sep; 65(5):767-93. PubMed ID: 12909250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stabilized hybrid discontinuous Galerkin finite element method for the cardiac monodomain equation.
    Rocha BM; Dos Santos RW; Igreja I; Loula AFD
    Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3341. PubMed ID: 32293783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition.
    Quan W; Evans SJ; Hastings HM
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):372-85. PubMed ID: 9509753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fundamental concepts in electrophysiology in cases and reviews.
    Stevenson WG; Asirvatham S
    Circ Arrhythm Electrophysiol; 2013 Dec; 6(6):e95-100. PubMed ID: 24347607
    [No Abstract]   [Full Text] [Related]  

  • 36. Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation.
    Gomes JM; Alvarenga A; Campos RS; Rocha BM; da Silva AP; dos Santos RW
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):600-8. PubMed ID: 25296402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Verification of cardiac tissue electrophysiology simulators using an N-version benchmark.
    Niederer SA; Kerfoot E; Benson AP; Bernabeu MO; Bernus O; Bradley C; Cherry EM; Clayton R; Fenton FH; Garny A; Heidenreich E; Land S; Maleckar M; Pathmanathan P; Plank G; RodrĂ­guez JF; Roy I; Sachse FB; Seemann G; Skavhaug O; Smith NP
    Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1954):4331-51. PubMed ID: 21969679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An efficient technique for the numerical solution of the bidomain equations.
    Whiteley JP
    Ann Biomed Eng; 2008 Aug; 36(8):1398-408. PubMed ID: 18481180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry.
    Zozor S; Blanc O; Jacquemet V; Virag N; Vesin JM; Pruvot E; Kappenberger L; Henriquez C
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):412-20. PubMed ID: 12723052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An atlas- and data-driven approach to initializing reaction-diffusion systems in computer cardiac electrophysiology.
    Hoogendoorn C; Sebastian R; Rodriguez JF; Lekadir K; Frangi AF
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2846. PubMed ID: 27796075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.