BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25099624)

  • 1. Probing pH-responsive interactions between polymer brushes and hydrogels by neutron reflectivity.
    Sudre G; Hourdet D; Creton C; Cousin F; Tran Y
    Langmuir; 2014 Aug; 30(32):9700-6. PubMed ID: 25099624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron reflectivity study of the swollen structure of polyzwitterion and polyeletrolyte brushes in aqueous solution.
    Kobayashi M; Ishihara K; Takahara A
    J Biomater Sci Polym Ed; 2014; 25(14-15):1673-86. PubMed ID: 25178564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface friction of hydrogels with well-defined polyelectrolyte brushes.
    Ohsedo Y; Takashina R; Gong JP; Osada Y
    Langmuir; 2004 Aug; 20(16):6549-55. PubMed ID: 15274553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between charge density and polyelectrolyte brush profile using simultaneous neutron reflectivity and in situ attenuated total internal reflection FTIR.
    Topham PD; Glidle A; Toolan DT; Weir MP; Skoda MW; Barker R; Howse JR
    Langmuir; 2013 May; 29(20):6068-76. PubMed ID: 23607484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-induced swelling and deswelling of weak polybase brushes.
    Weir MP; Heriot SY; Martin SJ; Parnell AJ; Holt SA; Webster JR; Jones RA
    Langmuir; 2011 Sep; 27(17):11000-7. PubMed ID: 21793596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responsive Adsorption of
    Sudre G; Siband E; Gallas B; Cousin F; Hourdet D; Tran Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of surfaces and interfaces of poly(N,N-dimethylacrylamide) hydrogels.
    Sudre G; Hourdet D; Cousin F; Creton C; Tran Y
    Langmuir; 2012 Aug; 28(33):12282-7. PubMed ID: 22823739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastretchable, Tough, and Notch-Insensitive Hydrogels Formed with Spherical Polymer Brush Crosslinker.
    Zhang R; Wang L; Shen Z; Li M; Guo X; Yao Y
    Macromol Rapid Commun; 2017 Nov; 38(22):. PubMed ID: 28961347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties.
    Yang J; Gong C; Shi FK; Xie XM
    J Phys Chem B; 2012 Oct; 116(39):12038-47. PubMed ID: 22950674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neutron reflectivity study of surfactant self-assembly in weak polyelectrolyte brushes at the sapphire-water interface.
    Moglianetti M; Webster JR; Edmondson S; Armes SP; Titmuss S
    Langmuir; 2011 Apr; 27(8):4489-96. PubMed ID: 21413747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution.
    Ramírez E; Burillo SG; Barrera-Díaz C; Roa G; Bilyeu B
    J Hazard Mater; 2011 Aug; 192(2):432-9. PubMed ID: 21705138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling pH-responsive polymer brushes to electricity: switching thickness and creating waves of swelling or collapse.
    Dunderdale GJ; Fairclough JP
    Langmuir; 2013 Mar; 29(11):3628-35. PubMed ID: 23441938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.
    Yadav V; Harkin AV; Robertson ML; Conrad JC
    Soft Matter; 2016 Apr; 12(15):3589-99. PubMed ID: 26979270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations.
    Ou Y; Sokoloff JB; Stevens MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011801. PubMed ID: 22400584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of enzymes to stimuli-responsive polymer brushes: Influence of brush conformation on adsorbed amount and biocatalytic activity.
    Koenig M; Bittrich E; König U; Rajeev BL; Müller M; Eichhorn KJ; Thomas S; Stamm M; Uhlmann P
    Colloids Surf B Biointerfaces; 2016 Oct; 146():737-45. PubMed ID: 27447452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swelling kinetics of microgels embedded in a polyacrylamide hydrogel matrix.
    Huang N; Guan Y; Zhu XX; Zhang Y
    Chemphyschem; 2014 Jun; 15(9):1785-92. PubMed ID: 24861868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pH-responsive poly(N-isopropylacrylamide-co-acrylic acid) hydrogel for the selective isolation of hemoglobin from human blood.
    Chen X; Chen S; Wang J
    Analyst; 2010 Jul; 135(7):1736-41. PubMed ID: 20480063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.
    Chan AW; Neufeld RJ
    Biomaterials; 2009 Oct; 30(30):6119-29. PubMed ID: 19660810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.