BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 25099656)

  • 1. The physical properties of supramolecular peptide assemblies: from building block association to technological applications.
    Adler-Abramovich L; Gazit E
    Chem Soc Rev; 2014; 43(20):6881-93. PubMed ID: 25099656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology.
    Makam P; Gazit E
    Chem Soc Rev; 2018 May; 47(10):3406-3420. PubMed ID: 29498728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics and engineering of peptide supramolecular nanostructures.
    Handelman A; Beker P; Amdursky N; Rosenman G
    Phys Chem Chem Phys; 2012 May; 14(18):6391-408. PubMed ID: 22460950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization.
    Gazit E
    Chem Soc Rev; 2007 Aug; 36(8):1263-9. PubMed ID: 17619686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short self-assembling peptides as building blocks for modern nanodevices.
    Lakshmanan A; Zhang S; Hauser CA
    Trends Biotechnol; 2012 Mar; 30(3):155-65. PubMed ID: 22197260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience.
    Cavalli S; Albericio F; Kros A
    Chem Soc Rev; 2010 Jan; 39(1):241-63. PubMed ID: 20023851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of nanostructure design with protein building blocks.
    Tsai CJ; Zheng J; Zanuy D; Haspel N; Wolfson H; Alemán C; Nussinov R
    Proteins; 2007 Jul; 68(1):1-12. PubMed ID: 17407160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions.
    Reches M; Gazit E
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2239-45. PubMed ID: 17663236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductionist Approach in Peptide-Based Nanotechnology.
    Gazit E
    Annu Rev Biochem; 2018 Jun; 87():533-553. PubMed ID: 29925257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications.
    Reches M; Gazit E
    Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The leucine zipper as a building block for self-assembled protein fibers.
    Ryadnov MG; Papapostolou D; Woolfson DN
    Methods Mol Biol; 2008; 474():35-51. PubMed ID: 19031059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA nanotechnology based on i-motif structures.
    Dong Y; Yang Z; Liu D
    Acc Chem Res; 2014 Jun; 47(6):1853-60. PubMed ID: 24845472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of Functional Nanostructures by Short Helical Peptide Building Blocks.
    Bera S; Gazit E
    Protein Pept Lett; 2019; 26(2):88-97. PubMed ID: 30227810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction: The physical properties of supramolecular peptide assemblies: from building block association to technological applications.
    Adler-Abramovich L; Gazit E
    Chem Soc Rev; 2014; 43(20):7236. PubMed ID: 25723149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration of protein aggregation by amphiphilic peptides: transformation of supramolecular structure of the aggregates.
    Artemova NV; Stein-Margolina VA; Bumagina ZM; Gurvits BY
    Biotechnol Prog; 2011; 27(3):846-54. PubMed ID: 21365787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design.
    Okesola BO; Mata A
    Chem Soc Rev; 2018 May; 47(10):3721-3736. PubMed ID: 29697727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of biomolecular templates for the fabrication of metal nanowires.
    Gazit E
    FEBS J; 2007 Jan; 274(2):317-22. PubMed ID: 17181546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications.
    Wang Y; Rencus-Lazar S; Zhou H; Yin Y; Jiang X; Cai K; Gazit E; Ji W
    ACS Nano; 2024 Jan; 18(2):1257-1288. PubMed ID: 38157317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Chiral Materials via Self-Assembly and Biomineralization of Peptides.
    Huang Z; Che S
    Chem Rec; 2015 Aug; 15(4):665-74. PubMed ID: 26083010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.