These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 25099803)
21. Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders. Li H; Lu L; Li X; Buffet PA; Dao M; Karniadakis GE; Suresh S Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9574-9579. PubMed ID: 30190436 [TBL] [Abstract][Full Text] [Related]
22. [Disorders of the membrane skeleton of erythrocytes in hereditary spherocytosis and elliptocytosis: significance of the molecular defect for pathogenesis and clinical severity]. Eber SW Klin Padiatr; 1991; 203(4):284-95. PubMed ID: 1942935 [TBL] [Abstract][Full Text] [Related]
23. Measurement of red blood cell mechanics during morphological changes. Park Y; Best CA; Badizadegan K; Dasari RR; Feld MS; Kuriabova T; Henle ML; Levine AJ; Popescu G Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6731-6. PubMed ID: 20351261 [TBL] [Abstract][Full Text] [Related]
24. The distribution of erythrocyte phospholipids in hereditary spherocytosis demonstrates a minimal role for erythrocyte spectrin on phospholipid diffusion and asymmetry. Kuypers FA; Lubin BH; Yee M; Agre P; Devaux PF; Geldwerth D Blood; 1993 Feb; 81(4):1051-7. PubMed ID: 8427987 [TBL] [Abstract][Full Text] [Related]
25. Adducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion. Anong WA; Franco T; Chu H; Weis TL; Devlin EE; Bodine DM; An X; Mohandas N; Low PS Blood; 2009 Aug; 114(9):1904-12. PubMed ID: 19567882 [TBL] [Abstract][Full Text] [Related]
26. Molecular basis of clinical and morphological heterogeneity in hereditary elliptocytosis (HE) with spectrin alpha I variants. Lecomte MC; Garbarz M; Gautero H; Bournier O; Galand C; Boivin P; Dhermy D Br J Haematol; 1993 Nov; 85(3):584-95. PubMed ID: 8136282 [TBL] [Abstract][Full Text] [Related]
27. Membrane skeleton-bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes. Gudi SR; Kumar A; Bhakuni V; Gokhale SM; Gupta CM Biochim Biophys Acta; 1990 Mar; 1023(1):63-72. PubMed ID: 2317498 [TBL] [Abstract][Full Text] [Related]
28. Viscoelastic properties of red cell membrane in hereditary elliptocytosis. Chabanel A; Sung KL; Rapiejko J; Prchal JT; Palek J; Liu SC; Chien S Blood; 1989 Feb; 73(2):592-5. PubMed ID: 2917191 [TBL] [Abstract][Full Text] [Related]
29. Regulation of protein mobility via thermal membrane undulations. Brown FL Biophys J; 2003 Feb; 84(2 Pt 1):842-53. PubMed ID: 12547768 [TBL] [Abstract][Full Text] [Related]
30. Influence of network topology on the elasticity of the red blood cell membrane skeleton. Hansen JC; Skalak R; Chien S; Hoger A Biophys J; 1997 May; 72(5):2369-81. PubMed ID: 9129841 [TBL] [Abstract][Full Text] [Related]
31. Hereditary elliptocytosis, spherocytosis and related disorders: consequences of a deficiency or a mutation of membrane skeletal proteins. Palek J Blood Rev; 1987 Sep; 1(3):147-68. PubMed ID: 3332099 [TBL] [Abstract][Full Text] [Related]
32. Role of band 3 in the erythrocyte membrane structural changes under thermal fluctuations -multi scale modeling considerations. Pajic-Lijakovic I J Bioenerg Biomembr; 2015 Dec; 47(6):507-18. PubMed ID: 26560902 [TBL] [Abstract][Full Text] [Related]
33. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation. Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642 [TBL] [Abstract][Full Text] [Related]
34. Calculation of a Gap restoration in the membrane skeleton of the red blood cell: possible role for myosin II in local repair. Cibert C; Prulière G; Lacombe C; Deprette C; Cassoly R Biophys J; 1999 Mar; 76(3):1153-65. PubMed ID: 10049301 [TBL] [Abstract][Full Text] [Related]
35. The bending rigidity of the red blood cell cytoplasmic membrane. Himbert S; D'Alessandro A; Qadri SM; Majcher MJ; Hoare T; Sheffield WP; Nagao M; Nagle JF; Rheinstädter MC PLoS One; 2022; 17(8):e0269619. PubMed ID: 35913930 [TBL] [Abstract][Full Text] [Related]
36. Conformational Distortions of the Red Blood Cell Spectrin Matrix Nanostructure in Response to Temperature Changes Kozlova E; Chernysh A; Sergunova V; Manchenko E; Moroz V; Kozlov A Scanning; 2019; 2019():8218912. PubMed ID: 31198487 [TBL] [Abstract][Full Text] [Related]
37. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Li J; Dao M; Lim CT; Suresh S Biophys J; 2005 May; 88(5):3707-19. PubMed ID: 15749778 [TBL] [Abstract][Full Text] [Related]
38. Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers. Schroer CFE; Baldauf L; van Buren L; Wassenaar TA; Melo MN; Koenderink GH; Marrink SJ Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5861-5872. PubMed ID: 32123101 [TBL] [Abstract][Full Text] [Related]
39. Effect of spectrin network elasticity on the shapes of erythrocyte doublets. Hoore M; Yaya F; Podgorski T; Wagner C; Gompper G; Fedosov DA Soft Matter; 2018 Aug; 14(30):6278-6289. PubMed ID: 30014074 [TBL] [Abstract][Full Text] [Related]
40. Lipid bilayer and cytoskeletal interactions in a red blood cell. Peng Z; Li X; Pivkin IV; Dao M; Karniadakis GE; Suresh S Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13356-61. PubMed ID: 23898181 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]