BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25099809)

  • 21. Effects of Fluorophore Attachment on Protein Conformation and Dynamics Studied by spFRET and NMR Spectroscopy.
    Sánchez-Rico C; Voith von Voithenberg L; Warner L; Lamb DC; Sattler M
    Chemistry; 2017 Oct; 23(57):14267-14277. PubMed ID: 28799205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a robust model system of FRET using base surrogates tethering fluorophores for strict control of their position and orientation within DNA duplex.
    Kato T; Kashida H; Kishida H; Yada H; Okamoto H; Asanuma H
    J Am Chem Soc; 2013 Jan; 135(2):741-50. PubMed ID: 23240980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein.
    Girodat D; Pati AK; Terry DS; Blanchard SC; Sanbonmatsu KY
    PLoS Comput Biol; 2020 Nov; 16(11):e1008293. PubMed ID: 33151943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Joint refinement of FRET measurements using spectroscopic and computational tools.
    Kyrychenko A; Rodnin MV; Ghatak C; Ladokhin AS
    Anal Biochem; 2017 Apr; 522():1-9. PubMed ID: 28108168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor.
    Ha T; Enderle T; Ogletree DF; Chemla DS; Selvin PR; Weiss S
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6264-8. PubMed ID: 8692803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simulation study on the influence of energy migration and relative interaction strengths of homo- and hetero-FRET on the net FRET efficiency.
    Rout J; Swain BC; Sakshi ; Biswas S; Das AK; Tripathy U
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117599. PubMed ID: 31751800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies.
    Norman DG; Grainger RJ; Uhrín D; Lilley DM
    Biochemistry; 2000 May; 39(21):6317-24. PubMed ID: 10828944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.
    Wallace B; Atzberger PJ
    PLoS One; 2017; 12(5):e0177122. PubMed ID: 28542211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple estimation of Förster Resonance Energy Transfer (FRET) orientation factor distribution in membranes.
    Loura LM
    Int J Mol Sci; 2012 Nov; 13(11):15252-70. PubMed ID: 23203123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA-Endonuclease Complex Dynamics by Simultaneous FRET and Fluorophore Intensity in Evanescent Field.
    Tutkus M; Marciulionis T; Sasnauskas G; Rutkauskas D
    Biophys J; 2017 Mar; 112(5):850-858. PubMed ID: 28297644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of the anticancer p28 peptide with p53-DBD as studied by fluorescence, FRET, docking and MD simulations.
    Bizzarri AR; Moscetti I; Cannistraro S
    Biochim Biophys Acta Gen Subj; 2019 Feb; 1863(2):342-350. PubMed ID: 30419285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonance energy transfer in DNA duplexes labeled with localized dyes.
    Cunningham PD; Khachatrian A; Buckhout-White S; Deschamps JR; Goldman ER; Medintz IL; Melinger JS
    J Phys Chem B; 2014 Dec; 118(50):14555-65. PubMed ID: 25397906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
    Spillmann CM; Ancona MG; Buckhout-White S; Algar WR; Stewart MH; Susumu K; Huston AL; Goldman ER; Medintz IL
    ACS Nano; 2013 Aug; 7(8):7101-18. PubMed ID: 23844838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES).
    Gordon F; Elcoroaristizabal S; Ryder AG
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129770. PubMed ID: 33214128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accounting for dye diffusion and orientation when relating FRET measurements to distances: three simple computational methods.
    Walczewska-Szewc K; Corry B
    Phys Chem Chem Phys; 2014 Jun; 16(24):12317-26. PubMed ID: 24824374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FRETraj: integrating single-molecule spectroscopy with molecular dynamics.
    Steffen FD; Sigel RKO; Börner R
    Bioinformatics; 2021 Nov; 37(21):3953-3955. PubMed ID: 34478493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indocyanine dyes approach free rotation at the 3' terminus of A-RNA: a comparison with the 5' terminus and consequences for fluorescence resonance energy transfer.
    Milas P; Gamari BD; Parrot L; Krueger BP; Rahmanseresht S; Moore J; Goldner LS
    J Phys Chem B; 2013 Jul; 117(29):8649-58. PubMed ID: 23799279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing the Ability of Enhanced Sampling Molecular Dynamics Methods To Reproduce the Behavior of Fluorescent Labels on Proteins.
    Walczewska-Szewc K; Deplazes E; Corry B
    J Chem Theory Comput; 2015 Jul; 11(7):3455-65. PubMed ID: 26575779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy.
    Leopold HJ; Leighton R; Schwarz J; Boersma AJ; Sheets ED; Heikal AA
    J Phys Chem B; 2019 Jan; 123(2):379-393. PubMed ID: 30571116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.