These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25099809)

  • 41. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer.
    Ozaki H; McLaughlin LW
    Nucleic Acids Res; 1992 Oct; 20(19):5205-14. PubMed ID: 1408835
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits.
    Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA
    J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distinguishing between protein dynamics and dye photophysics in single-molecule FRET experiments.
    Chung HS; Louis JM; Eaton WA
    Biophys J; 2010 Feb; 98(4):696-706. PubMed ID: 20159166
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer.
    Badali D; Gradinaru CC
    J Chem Phys; 2011 Jun; 134(22):225102. PubMed ID: 21682537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inter-dye distance distributions studied by a combination of single-molecule FRET-filtered lifetime measurements and a weighted accessible volume (wAV) algorithm.
    Höfig H; Gabba M; Poblete S; Kempe D; Fitter J
    Molecules; 2014 Nov; 19(12):19269-91. PubMed ID: 25429558
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy.
    Neubauer H; Gaiko N; Berger S; Schaffer J; Eggeling C; Tuma J; Verdier L; Seidel CA; Griesinger C; Volkmer A
    J Am Chem Soc; 2007 Oct; 129(42):12746-55. PubMed ID: 17900110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-molecule FRET measures bends and kinks in DNA.
    Wozniak AK; Schröder GF; Grubmüller H; Seidel CA; Oesterhelt F
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18337-42. PubMed ID: 19020079
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of the Fluorophore Mobility on Distance Measurements by Gas-Phase FRET.
    Metternich JB; Katzberger P; Kamenik AS; Tiwari P; Wu R; Riniker S; Zenobi R
    J Phys Chem A; 2023 Jul; 127(27):5620-5628. PubMed ID: 37403246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorescence resonance energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template.
    Wang L; Gaigalas AK; Blasic J; Holden MJ; Gallagher DT; Pires R
    Biopolymers; 2003; 72(6):401-12. PubMed ID: 14587062
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular dynamics simulation of configurational ensembles compatible with experimental FRET efficiency data through a restraint on instantaneous FRET efficiencies.
    Reif MM; Oostenbrink C
    J Comput Chem; 2014 Dec; 35(32):2319-32. PubMed ID: 25338770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.
    Aissaoui N; Moth-Poulsen K; Käll M; Johansson P; Wilhelmsson LM; Albinsson B
    Nanoscale; 2017 Jan; 9(2):673-683. PubMed ID: 27942672
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computer simulation to investigate the FRET application in DNA hybridization systems.
    Liao JM; Wang YT; Chen CL
    Phys Chem Chem Phys; 2011 Jun; 13(21):10364-71. PubMed ID: 21537495
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-molecule FRET ruler based on rigid DNA origami blocks.
    Stein IH; Schüller V; Böhm P; Tinnefeld P; Liedl T
    Chemphyschem; 2011 Feb; 12(3):689-95. PubMed ID: 21308944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extending Förster resonance energy transfer measurements beyond 100 Å using common organic fluorophores: enhanced transfer in the presence of multiple acceptors.
    Maliwal BP; Raut S; Fudala R; D'Auria S; Marzullo VM; Luini A; Gryczynski I; Gryczynski Z
    J Biomed Opt; 2012 Jan; 17(1):011006. PubMed ID: 22352640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anomalous surplus energy transfer observed with multiple FRET acceptors.
    Koushik SV; Blank PS; Vogel SS
    PLoS One; 2009 Nov; 4(11):e8031. PubMed ID: 19946626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation by Experimentation and Simulation of a FRET Pair Comprising Fluorescent Nucleobase Analogs in Nucleosomes.
    Hirashima S; Park S; Sugiyama H
    Chemistry; 2023 Apr; 29(24):e202203961. PubMed ID: 36700521
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bulk and single-molecule fluorescence studies of the saturation of the DNA double helix using YOYO-3 intercalator dye.
    Lopez SG; Ruedas-Rama MJ; Casares S; Alvarez-Pez JM; Orte A
    J Phys Chem B; 2012 Sep; 116(38):11561-9. PubMed ID: 22947035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FRET studies of the interaction of dimeric cyanine dyes with DNA.
    Laib S; Seeger S
    J Fluoresc; 2004 Mar; 14(2):187-91. PubMed ID: 15615044
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distance determination in protein-DNA complexes using fluorescence resonance energy transfer.
    Lorenz M; Diekmann S
    Methods Mol Biol; 2006; 335():243-55. PubMed ID: 16785632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.
    Okamura Y; Watanabe Y
    Methods Mol Biol; 2006; 335():43-56. PubMed ID: 16785619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.