These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25099865)

  • 1. Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana.
    Sánchez-Bermejo E; Castrillo G; del Llano B; Navarro C; Zarco-Fernández S; Martinez-Herrera DJ; Leo-del Puerto Y; Muñoz R; Cámara C; Paz-Ares J; Alonso-Blanco C; Leyva A
    Nat Commun; 2014 Aug; 5():4617. PubMed ID: 25099865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants.
    Chao DY; Chen Y; Chen J; Shi S; Chen Z; Wang C; Danku JM; Zhao FJ; Salt DE
    PLoS Biol; 2014 Dec; 12(12):e1002009. PubMed ID: 25464340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2).
    Dhankher OP; Rosen BP; McKinney EC; Meagher RB
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5413-8. PubMed ID: 16567632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata.
    Ellis DR; Gumaelius L; Indriolo E; Pickering IJ; Banks JA; Salt DE
    Plant Physiol; 2006 Aug; 141(4):1544-54. PubMed ID: 16766666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification.
    Del Giudice I; Limauro D; Pedone E; Bartolucci S; Fiorentino G
    Biochim Biophys Acta; 2013 Oct; 1834(10):2071-9. PubMed ID: 23800470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations.
    Glasser NR; Oyala PH; Osborne TH; Santini JM; Newman DK
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8614-E8623. PubMed ID: 30104376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation.
    Shi S; Wang T; Chen Z; Tang Z; Wu Z; Salt DE; Chao DY; Zhao FJ
    Plant Physiol; 2016 Nov; 172(3):1708-1719. PubMed ID: 27702843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases.
    Cesaro P; Cattaneo C; Bona E; Berta G; Cavaletto M
    Sci Rep; 2015 Sep; 5():14525. PubMed ID: 26412036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression.
    Dhankher OP; Li Y; Rosen BP; Shi J; Salt D; Senecoff JF; Sashti NA; Meagher RB
    Nat Biotechnol; 2002 Nov; 20(11):1140-5. PubMed ID: 12368812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico and in vivo studies of an Arabidopsis thaliana gene, ACR2, putatively involved in arsenic accumulation in plants.
    Nahar N; Rahman A; Moś M; Warzecha T; Algerin M; Ghosh S; Johnson-Brousseau S; Mandal A
    J Mol Model; 2012 Sep; 18(9):4249-62. PubMed ID: 22562211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice.
    Xu J; Shi S; Wang L; Tang Z; Lv T; Zhu X; Ding X; Wang Y; Zhao FJ; Wu Z
    New Phytol; 2017 Aug; 215(3):1090-1101. PubMed ID: 28407265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of arsenic resistance in Bacillus cereus strain AG27 by comparative protein modeling of arsC gene product.
    Jain S; Saluja B; Gupta A; Marla SS; Goel R
    Protein J; 2011 Feb; 30(2):91-101. PubMed ID: 21258851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana.
    Wang C; Na G; Bermejo ES; Chen Y; Banks JA; Salt DE; Zhao FJ
    New Phytol; 2018 Jan; 217(1):206-218. PubMed ID: 28857170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism.
    Chen W; Taylor NL; Chi Y; Millar AH; Lambers H; Finnegan PM
    Plant Cell Environ; 2014 Mar; 37(3):684-95. PubMed ID: 23961884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CDC25 homologue from rice functions as an arsenate reductase.
    Duan GL; Zhou Y; Tong YP; Mukhopadhyay R; Rosen BP; Zhu YG
    New Phytol; 2007; 174(2):311-321. PubMed ID: 17388894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms.
    Villadangos AF; Van Belle K; Wahni K; Dufe VT; Freitas S; Nur H; De Galan S; Gil JA; Collet JF; Mateos LM; Messens J
    Mol Microbiol; 2011 Nov; 82(4):998-1014. PubMed ID: 22032722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function prediction of arsenate reductase from Deinococcus indicus DR1.
    Chauhan D; Srivastava PA; Agnihotri V; Yennamalli RM; Priyadarshini R
    J Mol Model; 2019 Jan; 25(1):15. PubMed ID: 30610463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis.
    Chen W; Chi Y; Taylor NL; Lambers H; Finnegan PM
    Plant Physiol; 2010 Jul; 153(3):1385-97. PubMed ID: 20488895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How plants control arsenic accumulation.
    Meadows R
    PLoS Biol; 2014 Dec; 12(12):e1002008. PubMed ID: 25464031
    [No Abstract]   [Full Text] [Related]  

  • 20. Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots.
    Fischer S; Sánchez-Bermejo E; Xu X; Flis P; Ramakrishna P; Guerinot ML; Zhao FJ; Salt DE
    J Exp Bot; 2021 Feb; 72(2):415-425. PubMed ID: 33038235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.