BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25100057)

  • 1. Control of gluconeogenesis by metformin: does redox trump energy charge?
    Baur JA; Birnbaum MJ
    Cell Metab; 2014 Aug; 20(2):197-9. PubMed ID: 25100057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase.
    Madiraju AK; Erion DM; Rahimi Y; Zhang XM; Braddock DT; Albright RA; Prigaro BJ; Wood JL; Bhanot S; MacDonald MJ; Jurczak MJ; Camporez JP; Lee HY; Cline GW; Samuel VT; Kibbey RG; Shulman GI
    Nature; 2014 Jun; 510(7506):542-6. PubMed ID: 24847880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metformin's Therapeutic Efficacy in the Treatment of Diabetes Does Not Involve Inhibition of Mitochondrial Glycerol Phosphate Dehydrogenase.
    MacDonald MJ; Ansari IH; Longacre MJ; Stoker SW
    Diabetes; 2021 Jul; 70(7):1575-1580. PubMed ID: 33849997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.
    Alshawi A; Agius L
    J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The target of metformin in type 2 diabetes.
    Ferrannini E
    N Engl J Med; 2014 Oct; 371(16):1547-8. PubMed ID: 25317875
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular action of metformin in hepatocytes: an updated insight.
    Sliwinska A; Drzewoski J
    Curr Diabetes Rev; 2015; 11(3):175-81. PubMed ID: 25808533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis.
    LaMoia TE; Butrico GM; Kalpage HA; Goedeke L; Hubbard BT; Vatner DF; Gaspar RC; Zhang XM; Cline GW; Nakahara K; Woo S; Shimada A; Hüttemann M; Shulman GI
    Proc Natl Acad Sci U S A; 2022 Mar; 119(10):e2122287119. PubMed ID: 35238637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo.
    Madiraju AK; Qiu Y; Perry RJ; Rahimi Y; Zhang XM; Zhang D; Camporez JG; Cline GW; Butrico GM; Kemp BE; Casals G; Steinberg GR; Vatner DF; Petersen KF; Shulman GI
    Nat Med; 2018 Sep; 24(9):1384-1394. PubMed ID: 30038219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of hepatic gluconeogenesis by metformin. Synergism with insulin.
    Wollen N; Bailey CJ
    Biochem Pharmacol; 1988 Nov; 37(22):4353-8. PubMed ID: 3058129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation.
    Moonira T; Chachra SS; Ford BE; Marin S; Alshawi A; Adam-Primus NS; Arden C; Al-Oanzi ZH; Foretz M; Viollet B; Cascante M; Agius L
    J Biol Chem; 2020 Mar; 295(10):3330-3346. PubMed ID: 31974165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current understanding of metformin effect on the control of hyperglycemia in diabetes.
    An H; He L
    J Endocrinol; 2016 Mar; 228(3):R97-106. PubMed ID: 26743209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2.
    Meng J; Zhang C; Wang D; Zhu L; Wang L
    Biochem Biophys Res Commun; 2022 Sep; 621():1-7. PubMed ID: 35802941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.
    Owen MR; Doran E; Halestrap AP
    Biochem J; 2000 Jun; 348 Pt 3(Pt 3):607-14. PubMed ID: 10839993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.
    Foretz M; Hébrard S; Leclerc J; Zarrinpashneh E; Soty M; Mithieux G; Sakamoto K; Andreelli F; Viollet B
    J Clin Invest; 2010 Jul; 120(7):2355-69. PubMed ID: 20577053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thyroid hormone and dehydroepiandrosterone permit gluconeogenic hormone responses in hepatocytes.
    Kneer N; Lardy H
    Arch Biochem Biophys; 2000 Mar; 375(1):145-53. PubMed ID: 10683260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area.
    Tulipano G
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and Molecular Mechanisms of Metformin Action.
    LaMoia TE; Shulman GI
    Endocr Rev; 2021 Jan; 42(1):77-96. PubMed ID: 32897388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metformin primarily decreases plasma glucose not by gluconeogenesis suppression but by activating glucose utilization in a non-obese type 2 diabetes Goto-Kakizaki rats.
    Yoshida T; Okuno A; Tanaka J; Takahashi K; Nakashima R; Kanda S; Ogawa J; Hagisawa Y; Fujiwara T
    Eur J Pharmacol; 2009 Nov; 623(1-3):141-7. PubMed ID: 19765581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute renal metabolic effect of metformin assessed with hyperpolarised MRI in rats.
    Qi H; Nielsen PM; Schroeder M; Bertelsen LB; Palm F; Laustsen C
    Diabetologia; 2018 Feb; 61(2):445-454. PubMed ID: 28936623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae.
    Rigoulet M; Aguilaniu H; Avéret N; Bunoust O; Camougrand N; Grandier-Vazeille X; Larsson C; Pahlman IL; Manon S; Gustafsson L
    Mol Cell Biochem; 2004; 256-257(1-2):73-81. PubMed ID: 14977171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.