These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 25100605)

  • 41. The prefrontal cortex and the executive control of attention.
    Rossi AF; Pessoa L; Desimone R; Ungerleider LG
    Exp Brain Res; 2009 Jan; 192(3):489-97. PubMed ID: 19030851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gradients of functional organization in posterior parietal cortex revealed by visual attention, visual short-term memory, and intrinsic functional connectivity.
    Lefco RW; Brissenden JA; Noyce AL; Tobyne SM; Somers DC
    Neuroimage; 2020 Oct; 219():117029. PubMed ID: 32526387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Shared Neural Activity But Distinct Neural Dynamics for Cognitive Control in Monkey Prefrontal and Parietal Cortex.
    Blackman RK; Crowe DA; DeNicola AL; Sakellaridi S; Westerberg JA; Huynh AM; MacDonald AW; Sponheim SR; Chafee MV
    J Neurosci; 2023 Apr; 43(15):2767-2781. PubMed ID: 36894317
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Context-Dependent Accumulation of Sensory Evidence in the Parietal Cortex Underlies Flexible Task Switching.
    Kumano H; Suda Y; Uka T
    J Neurosci; 2016 Nov; 36(48):12192-12202. PubMed ID: 27903728
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex.
    Badre D; D'Esposito M
    J Cogn Neurosci; 2007 Dec; 19(12):2082-99. PubMed ID: 17892391
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recursive hierarchical embedding in vision is impaired by posterior middle temporal gyrus lesions.
    Martins MJD; Krause C; Neville DA; Pino D; Villringer A; Obrig H
    Brain; 2019 Oct; 142(10):3217-3229. PubMed ID: 31560064
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frontoparietal mechanisms supporting attention to location and intensity of painful stimuli.
    Lobanov OV; Quevedo AS; Hadsel MS; Kraft RA; Coghill RC
    Pain; 2013 Sep; 154(9):1758-1768. PubMed ID: 23711484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Top-down modulation of visual feature processing: the role of the inferior frontal junction.
    Zanto TP; Rubens MT; Bollinger J; Gazzaley A
    Neuroimage; 2010 Nov; 53(2):736-45. PubMed ID: 20600999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Executive control over cognition: stronger and earlier rule-based modulation of spatial category signals in prefrontal cortex relative to parietal cortex.
    Goodwin SJ; Blackman RK; Sakellaridi S; Chafee MV
    J Neurosci; 2012 Mar; 32(10):3499-515. PubMed ID: 22399773
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Causal Evidence for Learning-Dependent Frontal Lobe Contributions to Cognitive Control.
    Muhle-Karbe PS; Jiang J; Egner T
    J Neurosci; 2018 Jan; 38(4):962-973. PubMed ID: 29229706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.
    Kim YJ; Tsai JJ; Ojemann J; Verghese P
    J Neurosci; 2017 May; 37(19):4942-4953. PubMed ID: 28411268
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty.
    Paulus MP; Hozack N; Zauscher B; McDowell JE; Frank L; Brown GG; Braff DL
    Neuroimage; 2001 Jan; 13(1):91-100. PubMed ID: 11133312
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Perceptual decisions formed by accumulation of audiovisual evidence in prefrontal cortex.
    Noppeney U; Ostwald D; Werner S
    J Neurosci; 2010 May; 30(21):7434-46. PubMed ID: 20505110
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential roles of inferior frontal and inferior parietal cortex in task switching: evidence from stimulus-categorization switching and response-modality switching.
    Philipp AM; Weidner R; Koch I; Fink GR
    Hum Brain Mapp; 2013 Aug; 34(8):1910-20. PubMed ID: 22438215
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unity and diversity of tonic and phasic executive control components in episodic and working memory.
    Marklund P; Fransson P; Cabeza R; Larsson A; Ingvar M; Nyberg L
    Neuroimage; 2007 Jul; 36(4):1361-73. PubMed ID: 17524668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Continuous and discrete representations of feature-based attentional priority in human frontoparietal network.
    Gong M; Liu T
    Cogn Neurosci; 2020 Jan; 11(1-2):47-59. PubMed ID: 30922203
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control.
    Tamber-Rosenau BJ; Asplund CL; Marois R
    J Neurophysiol; 2018 Nov; 120(5):2498-2512. PubMed ID: 30156458
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Task-context-dependent Linear Representation of Multiple Visual Objects in Human Parietal Cortex.
    Jeong SK; Xu Y
    J Cogn Neurosci; 2017 Oct; 29(10):1778-1789. PubMed ID: 28598733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Feature-specific attentional priority signals in human cortex.
    Liu T; Hospadaruk L; Zhu DC; Gardner JL
    J Neurosci; 2011 Mar; 31(12):4484-95. PubMed ID: 21430149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.