These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25100729)

  • 1. Distinguishing closely related amyloid precursors using an RNA aptamer.
    Sarell CJ; Karamanos TK; White SJ; Bunka DHJ; Kalverda AP; Thompson GS; Barker AM; Stockley PG; Radford SE
    J Biol Chem; 2014 Sep; 289(39):26859-26871. PubMed ID: 25100729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure in the core of amyloid fibrils formed from human β₂m and its truncated variant ΔN6.
    Su Y; Sarell CJ; Eddy MT; Debelouchina GT; Andreas LB; Pashley CL; Radford SE; Griffin RG
    J Am Chem Soc; 2014 Apr; 136(17):6313-25. PubMed ID: 24679070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular matrix components modulate different stages in β
    Benseny-Cases N; Karamanos TK; Hoop CL; Baum J; Radford SE
    J Biol Chem; 2019 Jun; 294(24):9392-9401. PubMed ID: 30996004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the repertoire of amyloid polymorphs by co-polymerization of related protein precursors.
    Sarell CJ; Woods LA; Su Y; Debelouchina GT; Ashcroft AE; Griffin RG; Stockley PG; Radford SE
    J Biol Chem; 2013 Mar; 288(10):7327-37. PubMed ID: 23329840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of DNA Aptamer That Blocks the Fibrillogenesis of a Proteolytic Amyloidogenic Fragment of β
    Fukasawa K; Higashimoto Y; Ando Y; Motomiya Y
    Ther Apher Dial; 2018 Feb; 22(1):61-66. PubMed ID: 28960840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of RNA aptamers specific for amyloid fibril epitopes.
    Bunka DH; Mantle BJ; Morten IJ; Tennent GA; Radford SE; Stockley PG
    J Biol Chem; 2007 Nov; 282(47):34500-9. PubMed ID: 17878167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural mapping of oligomeric intermediates in an amyloid assembly pathway.
    Karamanos TK; Jackson MP; Calabrese AN; Goodchild SC; Cawood EE; Thompson GS; Kalverda AP; Hewitt EW; Radford SE
    Elife; 2019 Sep; 8():. PubMed ID: 31552823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The residues 4 to 6 at the N-terminus in particular modulate fibril propagation of β-microglobulin.
    Dang H; Chen Z; Chen W; Luo X; Liu P; Wang L; Chen J; Tang X; Wang Z; Liang Y
    Acta Biochim Biophys Sin (Shanghai); 2022 Jan; 54(2):187-198. PubMed ID: 35130623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermolecular alignment in β2-microglobulin amyloid fibrils.
    Debelouchina GT; Platt GW; Bayro MJ; Radford SE; Griffin RG
    J Am Chem Soc; 2010 Dec; 132(48):17077-9. PubMed ID: 21077676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of aptamers for amyloid beta-protein, the causative agent of Alzheimer's disease.
    Rahimi F; Bitan G
    J Vis Exp; 2010 May; (39):. PubMed ID: 20616783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate.
    Jahn TR; Parker MJ; Homans SW; Radford SE
    Nat Struct Mol Biol; 2006 Mar; 13(3):195-201. PubMed ID: 16491092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the causes and consequences of co-polymerization in amyloid formation.
    Sarell CJ; Stockley PG; Radford SE
    Prion; 2013; 7(5):359-68. PubMed ID: 24025483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering the Early Assembly Mechanism for Amyloidogenic β2-Microglobulin Using Cross-linking and Native Mass Spectrometry.
    Hall Z; Schmidt C; Politis A
    J Biol Chem; 2016 Feb; 291(9):4626-37. PubMed ID: 26655720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA aptamers generated against oligomeric Abeta40 recognize common amyloid aptatopes with low specificity but high sensitivity.
    Rahimi F; Murakami K; Summers JL; Chen CH; Bitan G
    PLoS One; 2009 Nov; 4(11):e7694. PubMed ID: 19901993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common beta-sheet architecture underlies in vitro and in vivo beta2-microglobulin amyloid fibrils.
    Jahn TR; Tennent GA; Radford SE
    J Biol Chem; 2008 Jun; 283(25):17279-86. PubMed ID: 18424782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational conversion during amyloid formation at atomic resolution.
    Eichner T; Kalverda AP; Thompson GS; Homans SW; Radford SE
    Mol Cell; 2011 Jan; 41(2):161-72. PubMed ID: 21255727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-fibrillogenesis of Wild-type and D76N β2-Microglobulin: THE CRUCIAL ROLE OF FIBRILLAR SEEDS.
    Natalello A; Mangione PP; Giorgetti S; Porcari R; Marchese L; Zorzoli I; Relini A; Ami D; Faravelli G; Valli M; Stoppini M; Doglia SM; Bellotti V; Raimondi S
    J Biol Chem; 2016 Apr; 291(18):9678-89. PubMed ID: 26921323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Amyloidogenic Protein Self-Assembly Using Tethered Small Molecules.
    Cawood EE; Guthertz N; Ebo JS; Karamanos TK; Radford SE; Wilson AJ
    J Am Chem Soc; 2020 Dec; 142(49):20845-20854. PubMed ID: 33253560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibril growth kinetics reveal a region of beta2-microglobulin important for nucleation and elongation of aggregation.
    Platt GW; Routledge KE; Homans SW; Radford SE
    J Mol Biol; 2008 Apr; 378(1):251-63. PubMed ID: 18342332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an understanding of the structural molecular mechanism of beta(2)-microglobulin amyloid formation in vitro.
    Radford SE; Gosal WS; Platt GW
    Biochim Biophys Acta; 2005 Nov; 1753(1):51-63. PubMed ID: 16099226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.