These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 25100802)

  • 21. The role of multiscale roughness in the Lotus effect: is it essential for super-hydrophobicity?
    Bittoun E; Marmur A
    Langmuir; 2012 Oct; 28(39):13933-42. PubMed ID: 22946829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates.
    Cho KH; Chen LJ
    Nanotechnology; 2011 Nov; 22(44):445706. PubMed ID: 21979566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidating the lotus and rose-petal effects on hierarchical surfaces: Study of the effect of topographical scales on the contact angle hysteresis.
    Bami Chatenet Y; Valette S
    J Colloid Interface Sci; 2024 Jul; 676():355-367. PubMed ID: 39032418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of a metastable superhydrophobic surface to an ultraphobic surface.
    Li XM; He T; Crego-Calama M; Reinhoudt DN
    Langmuir; 2008 Aug; 24(15):8008-12. PubMed ID: 18605708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the petal effect: Wetting properties and surface structure of natural rose petals and rose petal-derived surfaces.
    Parra-Vicente S; Ibáñez-Ibáñez PF; Cabrerizo-Vílchez M; Sánchez-Almazo I; Rodríguez-Valverde MÁ; Ruiz-Cabello FJM
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113832. PubMed ID: 38447447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hysteresis with regard to Cassie and Wenzel states on superhydrophobic surfaces.
    Patankar NA
    Langmuir; 2010 May; 26(10):7498-503. PubMed ID: 20085371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-fluid wetting behavior of a hydrophobic silicon nanowire array.
    Kim Y; Chung Y; Tian Y; Carraro C; Maboudian R
    Langmuir; 2014 Nov; 30(44):13330-7. PubMed ID: 25356959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superhydrophobic states.
    Lafuma A; Quéré D
    Nat Mater; 2003 Jul; 2(7):457-60. PubMed ID: 12819775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A theoretical approach to the relationship between wettability and surface microstructures of epidermal cells and structured cuticles of flower petals.
    Taneda H; Watanabe-Taneda A; Chhetry R; Ikeda H
    Ann Bot; 2015 May; 115(6):923-37. PubMed ID: 25851137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel method of producing a superhydrophobic surface on Si.
    Liu B; Lange FF
    Langmuir; 2010 Mar; 26(5):3637-40. PubMed ID: 19928882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size.
    Liu B; Lange FF
    J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A stable intermediate wetting state after a water drop contacts the bottom of a microchannel or is placed on a single corner.
    Luo C; Xiang M; Heng X
    Langmuir; 2012 Jun; 28(25):9554-61. PubMed ID: 22639865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces.
    Dorrer C; Rühe J
    Langmuir; 2007 Mar; 23(7):3820-4. PubMed ID: 17311432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.