These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25100944)

  • 21. Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma.
    Bentmann E; Haass C; Dormann D
    FEBS J; 2013 Sep; 280(18):4348-70. PubMed ID: 23587065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor.
    Wang IF; Wu LS; Chang HY; Shen CK
    J Neurochem; 2008 May; 105(3):797-806. PubMed ID: 18088371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation.
    Krichevsky AM; Kosik KS
    Neuron; 2001 Nov; 32(4):683-96. PubMed ID: 11719208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation.
    Decker CJ; Parker R
    Cold Spring Harb Perspect Biol; 2012 Sep; 4(9):a012286. PubMed ID: 22763747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mammalian Staufen 1 is recruited to stress granules and impairs their assembly.
    Thomas MG; Martinez Tosar LJ; Desbats MA; Leishman CC; Boccaccio GL
    J Cell Sci; 2009 Feb; 122(Pt 4):563-73. PubMed ID: 19193871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors.
    Ravanidis S; Kattan FG; Doxakis E
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30081499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of RNA Binding Proteins for Local mRNA Translation: Implications in Neurological Disorders.
    Thelen MP; Kye MJ
    Front Mol Biosci; 2019; 6():161. PubMed ID: 32010708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BUHO: a MATLAB script for the study of stress granules and processing bodies by high-throughput image analysis.
    Perez-Pepe M; Slomiansky V; Loschi M; Luchelli L; Neme M; Thomas MG; Boccaccio GL
    PLoS One; 2012; 7(12):e51495. PubMed ID: 23284702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.
    Chen L; Dumelie JG; Li X; Cheng MH; Yang Z; Laver JD; Siddiqui NU; Westwood JT; Morris Q; Lipshitz HD; Smibert CA
    Genome Biol; 2014 Jan; 15(1):R4. PubMed ID: 24393533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules.
    Frydryskova K; Masek T; Borcin K; Mrvova S; Venturi V; Pospisek M
    BMC Mol Biol; 2016 Aug; 17(1):21. PubMed ID: 27578149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation.
    Tsang B; Arsenault J; Vernon RM; Lin H; Sonenberg N; Wang LY; Bah A; Forman-Kay JD
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4218-4227. PubMed ID: 30765518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-translational modifications of RNA-binding proteins and their roles in RNA granules.
    Lee EK
    Curr Protein Pept Sci; 2012 Jun; 13(4):331-6. PubMed ID: 22708487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes.
    Thomas MG; Martinez Tosar LJ; Loschi M; Pasquini JM; Correale J; Kindler S; Boccaccio GL
    Mol Biol Cell; 2005 Jan; 16(1):405-20. PubMed ID: 15525674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequestration of highly expressed mRNAs in cytoplasmic granules, P-bodies, and stress granules enhances cell viability.
    Lavut A; Raveh D
    PLoS Genet; 2012; 8(2):e1002527. PubMed ID: 22383896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the importance of mRNA transport in memory.
    Sánchez-Carbente Mdel R; Desgroseillers L
    Prog Brain Res; 2008; 169():41-58. PubMed ID: 18394467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression.
    Mazroui R; Huot ME; Tremblay S; Filion C; Labelle Y; Khandjian EW
    Hum Mol Genet; 2002 Nov; 11(24):3007-17. PubMed ID: 12417522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptome-Wide Comparison of Stress Granules and P-Bodies Reveals that Translation Plays a Major Role in RNA Partitioning.
    Matheny T; Rao BS; Parker R
    Mol Cell Biol; 2019 Dec; 39(24):. PubMed ID: 31591142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Delocalization of the multifunctional RNA splicing factor TLS/FUS in hippocampal neurones: exclusion from the nucleus and accumulation in dendritic granules and spine heads.
    Belly A; Moreau-Gachelin F; Sadoul R; Goldberg Y
    Neurosci Lett; 2005 May; 379(3):152-7. PubMed ID: 15843054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The function of RNA-binding proteins at the synapse: implications for neurodegeneration.
    Sephton CF; Yu G
    Cell Mol Life Sci; 2015 Oct; 72(19):3621-35. PubMed ID: 26047658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of stress granules in virus systems.
    White JP; Lloyd RE
    Trends Microbiol; 2012 Apr; 20(4):175-83. PubMed ID: 22405519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.