These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 25101635)
1. Chemically enhanced double-gate bilayer graphene field-effect transistor with neutral channel for logic applications. Nourbakhsh A; Agarwal TK; Klekachev A; Asselberghs I; Cantoro M; Huyghebaert C; Heyns M; Verhelst M; Thean A; De Gendt S Nanotechnology; 2014 Aug; 25(34):345203. PubMed ID: 25101635 [TBL] [Abstract][Full Text] [Related]
2. Opening an electrical band gap of bilayer graphene with molecular doping. Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152 [TBL] [Abstract][Full Text] [Related]
3. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s. Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434 [TBL] [Abstract][Full Text] [Related]
4. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor. Kim W; Riikonen J; Li C; Chen Y; Lipsanen H Nanotechnology; 2013 Oct; 24(39):395202. PubMed ID: 24013367 [TBL] [Abstract][Full Text] [Related]
5. Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio. Lee SY; Duong DL; Vu QA; Jin Y; Kim P; Lee YH ACS Nano; 2015 Sep; 9(9):9034-42. PubMed ID: 26308383 [TBL] [Abstract][Full Text] [Related]
6. Self-induced gate dielectric for graphene field-effect transistor. Thiyagarajan K; Saravanakumar B; Mohan R; Kim SJ ACS Appl Mater Interfaces; 2013 Jul; 5(14):6443-6. PubMed ID: 23808621 [TBL] [Abstract][Full Text] [Related]
7. Graphene-graphene oxide floating gate transistor memory. Jang S; Hwang E; Lee JH; Park HS; Cho JH Small; 2015 Jan; 11(3):311-8. PubMed ID: 25163911 [TBL] [Abstract][Full Text] [Related]
8. Gate-induced insulating state in bilayer graphene devices. Oostinga JB; Heersche HB; Liu X; Morpurgo AF; Vandersypen LM Nat Mater; 2008 Feb; 7(2):151-7. PubMed ID: 18059274 [TBL] [Abstract][Full Text] [Related]
9. Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation. Shih CJ; Wang QH; Son Y; Jin Z; Blankschtein D; Strano MS ACS Nano; 2014 Jun; 8(6):5790-8. PubMed ID: 24824139 [TBL] [Abstract][Full Text] [Related]
10. Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors. Fiori G; Betti A; Bruzzone S; Iannaccone G ACS Nano; 2012 Mar; 6(3):2642-8. PubMed ID: 22372431 [TBL] [Abstract][Full Text] [Related]
11. Ambipolar Charge Transport in Two-Dimensional WS Lee G; Oh S; Kim J; Kim J ACS Appl Mater Interfaces; 2020 May; 12(20):23127-23133. PubMed ID: 32337986 [TBL] [Abstract][Full Text] [Related]
12. Direct observation of a widely tunable bandgap in bilayer graphene. Zhang Y; Tang TT; Girit C; Hao Z; Martin MC; Zettl A; Crommie MF; Shen YR; Wang F Nature; 2009 Jun; 459(7248):820-3. PubMed ID: 19516337 [TBL] [Abstract][Full Text] [Related]
13. A High-Performance Top-Gated Graphene Field-Effect Transistor with Excellent Flexibility Enabled by an iCVD Copolymer Gate Dielectric. Oh JG; Pak K; Kim CS; Bong JH; Hwang WS; Im SG; Cho BJ Small; 2018 Mar; 14(9):. PubMed ID: 29251418 [TBL] [Abstract][Full Text] [Related]
14. Demonstration of Complementary Ternary Graphene Field-Effect Transistors. Kim YJ; Kim SY; Noh J; Shim CH; Jung U; Lee SK; Chang KE; Cho C; Lee BH Sci Rep; 2016 Dec; 6():39353. PubMed ID: 27991594 [TBL] [Abstract][Full Text] [Related]
15. Low-voltage graphene field-effect transistors based on octadecylphosphonic acid modified solution-processed high-k dielectrics. Zhou S; Su Y; Xiao Y; Zhao N; Xu J; Wong C Nanotechnology; 2014 Jul; 25(26):265201. PubMed ID: 24915783 [TBL] [Abstract][Full Text] [Related]
16. High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. Lu CC; Lin YC; Yeh CH; Huang JC; Chiu PW ACS Nano; 2012 May; 6(5):4469-74. PubMed ID: 22501029 [TBL] [Abstract][Full Text] [Related]
18. Enhanced logic performance with semiconducting bilayer graphene channels. Li SL; Miyazaki H; Hiura H; Liu C; Tsukagoshi K ACS Nano; 2011 Jan; 5(1):500-6. PubMed ID: 21158484 [TBL] [Abstract][Full Text] [Related]
19. A reliable and controllable graphene doping method compatible with current CMOS technology and the demonstration of its device applications. Kim S; Shin S; Kim T; Du H; Song M; Kim KS; Cho S; Lee SW; Seo S Nanotechnology; 2017 Apr; 28(17):175710. PubMed ID: 28374681 [TBL] [Abstract][Full Text] [Related]
20. Field-effect transistors built from all two-dimensional material components. Roy T; Tosun M; Kang JS; Sachid AB; Desai SB; Hettick M; Hu CC; Javey A ACS Nano; 2014 Jun; 8(6):6259-64. PubMed ID: 24779528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]