These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25101643)

  • 1. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.
    Munir RI; Schellenberg J; Henrissat B; Verbeke TJ; Sparling R; Levin DB
    PLoS One; 2014; 9(8):e104260. PubMed ID: 25101643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose.
    Munir RI; Spicer V; Krokhin OV; Shamshurin D; Zhang X; Taillefer M; Blunt W; Cicek N; Sparling R; Levin DB
    BMC Microbiol; 2016 May; 16():91. PubMed ID: 27215540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomic analysis of the cellulolytic system of Clostridium termitidis CT1112 reveals distinct protein expression profiles upon growth on α-cellulose and cellobiose.
    Munir RI; Spicer V; Shamshurin D; Krokhin OV; Wilkins J; Ramachandran U; Sparling R; Levin DB
    J Proteomics; 2015 Jul; 125():41-53. PubMed ID: 25957533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Genomics of Core Metabolism Genes of Cellulolytic and Non-cellulolytic Clostridium Species.
    Lal S; Levin DB
    Adv Biochem Eng Biotechnol; 2016; 156():79-112. PubMed ID: 26907553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite.
    Liu N; Li H; Chevrette MG; Zhang L; Cao L; Zhou H; Zhou X; Zhou Z; Pope PB; Currie CR; Huang Y; Wang Q
    ISME J; 2019 Jan; 13(1):104-117. PubMed ID: 30116044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR
    PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the plant polysaccharide degradation potential of the xylanolytic yeast Pseudozyma brasiliensis.
    Kaupert Neto AA; Borin GP; Goldman GH; Damásio AR; Oliveira JV
    FEMS Yeast Res; 2016 Mar; 16(2):fov117. PubMed ID: 26712719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.
    Ferreira Filho JA; Horta MAC; Beloti LL; Dos Santos CA; de Souza AP
    BMC Genomics; 2017 Oct; 18(1):779. PubMed ID: 29025413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium clariflavum: Key Cellulosome Players Are Revealed by Proteomic Analysis.
    Artzi L; Morag E; Barak Y; Lamed R; Bayer EA
    mBio; 2015 May; 6(3):e00411-15. PubMed ID: 25991683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial kinetics of Clostridium termitidis on cellobiose and glucose for biohydrogen production.
    Gomez-Flores M; Nakhla G; Hafez H
    Biotechnol Lett; 2015 Oct; 37(10):1965-71. PubMed ID: 26093605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum.
    Levi Hevroni B; Moraïs S; Ben-David Y; Morag E; Bayer EA
    mBio; 2020 Mar; 11(2):. PubMed ID: 32234813
    [No Abstract]   [Full Text] [Related]  

  • 12. High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of CAZymes.
    Zheng Y; Maruoka M; Nanatani K; Hidaka M; Abe N; Kaneko J; Sakai Y; Abe K; Yokota A; Yabe S
    J Biosci Bioeng; 2021 Jun; 131(6):622-630. PubMed ID: 33676867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Draft Genome Sequence of the Cellulolytic, Mesophilic, Anaerobic Bacterium Clostridium termitidis Strain CT1112 (DSM 5398).
    Lal S; Ramachandran U; Zhang X; Munir R; Sparling R; Levin DB
    Genome Announc; 2013 May; 1(3):. PubMed ID: 23704187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling essential cellulosomal components of the (
    Zhivin-Nissan O; Dassa B; Morag E; Kupervaser M; Levin Y; Bayer EA
    Biotechnol Biofuels; 2019; 12():115. PubMed ID: 31086567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate-active enzymes revealed in Coptotermes formosanus (Isoptera: Rhinotermitidae) transcriptome.
    Zhang D; Lax AR; Henrissat B; Coutinho P; Katiya N; Nierman WC; Fedorova N
    Insect Mol Biol; 2012 Apr; 21(2):235-45. PubMed ID: 22243654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides.
    Sawhney N; Crooks C; Chow V; Preston JF; St John FJ
    BMC Genomics; 2016 Feb; 17():131. PubMed ID: 26912334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis.
    Tsegaye B; Balomajumder C; Roy P
    Int Microbiol; 2019 Mar; 22(1):29-39. PubMed ID: 30810928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides.
    Aburaya S; Aoki W; Kuroda K; Minakuchi H; Ueda M
    BMC Microbiol; 2019 Jun; 19(1):118. PubMed ID: 31159733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing.
    Tamaru Y; Miyake H; Kuroda K; Ueda M; Doi RH
    Environ Technol; 2010; 31(8-9):889-903. PubMed ID: 20662379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights from genome of Clostridium butyricum INCQS635 reveal mechanisms to convert complex sugars for biofuel production.
    Bruce T; Leite FG; Miranda M; Thompson CC; Pereira N; Faber M; Thompson FL
    Arch Microbiol; 2016 Mar; 198(2):115-27. PubMed ID: 26525220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.